Benign breast disease (BBD) is diagnosed when a woman undergoes a breast biopsy for an abnormality found through physical breast exam or screening mammogram and pathological analysis of the biopsy shows no evidence of malignancy. Approximately 80% of breast biopsies reveal a benign lesion. The identification of atypia in BBD is a well-established, strong risk factor for future breast cancer; however, the diagnosis of atypia in BBD is one of the most challenging areas of diagnostic pathology, and it has proven difficult to create standardized objective criteria for the diagnosis of atypical lesion in BBD. Lobular involution has recently been shown to be significantly associated with breast cancer risk; however, there are currently no clinically available tools to quantitate lobular involution, and consequently, this feature is not currently incorporated into pathology reports. Stromal characteristics are known to play a crucial role in all stages of breast carcinogenesis; however, the association of quantitative stromal characteristics and breast cancer risk has never been evaluated. In this two year project, we will extend our previous work based in invasive cancer to develop a computational pathology program for the quantitative assessment of both established and novel morphological features in normal breast and benign breast disease lesions (Aim 1). To achieve this aim, we will use the Nurses' Health Study (NHS) Incident BBD cohort, which contains histological slides from a total of 1758 NHS participants with BBD. All cases have been previously reviewed and annotated by expert breast pathologists. These annotations will be used extensively in both the design and evaluation of the computational pathology platform.
In Aim 2 of our study, we will examine associations between computational pathology (C- Path) features with future breast cancer risk. To achieve this aim, we will use the NHS BBD Breast Cancer Nested Case Control cohort, which consists of 613 women with BBD who went on to develop breast cancer matched to 2407 women who did not. Using this unique cohort, we will perform analyses to determine the association of established and novel C-Path derived morphological features with cancer risk and to determine the added value of utilizing C-Path to predict future cancer risk. The overriding goal of our project is to develop a new computational system for the objective, quantitative assessment of both established and novel morphologic characteristics of breast tissue in women with BBD.
We aim to use this system to gain biological insight into morphologic factors associated with breast cancer risk and to improve the performance of breast cancer risk prediction models. If successful, our project will result in the development of a clinically applicable tool that will provide objective quantitative assessments of histopathological features in nonmalignant breast tissue to inform breast cancer risk prediction models and to guide clinical decisions. This development could represent a paradigm shift in how normal breast and benign breast disease pathology is measured and used in both clinical practice and translational breast cancer research.

Public Health Relevance

This project focuses on the development of a new computational system for the analysis of breast pathology in normal breast tissue and benign breast disease lesions. We will use the system to measure established and novel morphological features of breast tissue, and we will conduct studies to predict future breast cancer risk from the computational analysis of non-malignant breast tissue. If successful, these studies will provide the rationale for the use of computational pathology for the assessment of the pathology of benign breast diseases in translational research and in clinical care, thus supporting efforts a breast cancer risk prediction and prevention.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-B (J1))
Program Officer
Divi, Rao L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Beth Israel Deaconess Medical Center
United States
Zip Code
Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun et al. (2017) Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat Biotechnol 35:757-764
Radiya-Dixit, Evani; Zhu, David; Beck, Andrew H (2017) Automated Classification of Benign and Malignant Proliferative Breast Lesions. Sci Rep 7:9900
Beca, Francisco; Kensler, Kevin; Glass, Benjamin et al. (2017) EZH2 protein expression in normal breast epithelium and risk of breast cancer: results from the Nurses' Health Studies. Breast Cancer Res 19:21
Collins, Laura C; Aroner, Sarah A; Connolly, James L et al. (2016) Breast cancer risk by extent and type of atypical hyperplasia: An update from the Nurses' Health Studies. Cancer 122:515-20