Opioid-induced glial activation, which compromises pain treatment and contributes to the development of drug addiction and abuse, is regulated via a signaling pathway downstream of toll-like receptor-4 (TLR4), a membrane spanning receptor that functions in complex with its accessory protein MD-2. As current opioid pharmacotherapeutics have failed to control pain while avoiding the negative consequences, there is an urgent need to understand opioid dysregulation via TLR4. The central hypothesis of the current proposal is that disruption of the TLR-4/MD-2 complex formation can inhibit opioid-induced glial activation, thereby enhancing analgesia and reducing opioid tolerance and dependence. The rationale underlying the proposed research is that the identified inhibitors, which selectively block the critical protein-protein interactions between TLR4 and MD-2, will provide a useful tool for investigating the role of the TLR4-mediated signaling pathway in glial activation. The proposed research is innovative because it is the first drug discovery approach attempting to regulate opioid-induced glial activation. The proposed high risk/high reward approach, if successful, is projected to yield significant novel outcomes. First, the results will shed light on the mechanism of the clinically relevant opioid-induced glial activation. Second, if successful, the peptide and peptidomimetic antagonists of the TLR4/MD-2 interactions identified in the proposed research can serve as prototypes for more drug-like small-molecule inhibitors. These inhibitors may eventually find application in the development of novel therapeutics to enhance the clinical efficacy of opioid analgesics and to treat opioid addiction and abuse, as well as other clinically relevant indications. The proposed studies are built on a strong collaborative team with expertise that optimizes its chance to effectively bridge between atomic detail of the TLR4/MD-2 interaction and its macroscopic effect, namely pain management and avoiding negative consequences of opoid use.
In Aim 1, antagonists of TLR4 or MD-2 that block the TLR4/MD-2 complex formation will be developed using a cutting-edge computational technology. The working hypothesis here is that conformationally strained peptides derived from the binding region can compete with the full-length protein and thereby inhibit the TLR4/MD-2 interaction. These peptides can serve as starting points for the computational design of stronger inhibitors.
In Aim 2, the second working hypothesis, that the inhibitors of the TLR4/MD-2 interactions can non-competitively prevent opioids from inducing TLR4-mediated glial activation, will be tested. Cellular assays and animal models will be used to evaluate the inhibition of glial activation by the TLR4 antagonists both in vitro and in vivo. The proposed research is significant because it is expected to establish the TLR4/MD-2 protein-protein complex as a novel therapeutic target for optimizing opioid analgesia while preventing and treating opioid abuse. Regarding its positive impact on scientific advancements, this work will (1) improve scientific understanding of drug dependence and pain suppression and (2) allow the development of a new generation of therapeutics.

Public Health Relevance

The proposed research aims to unravel the mechanism of opioid-induced glial activation that both hinders the ability of opioids to effectively control pain and also importantly contributes to the development of drug addiction and abuse. State-of-the-art technologies will be employed to define, design, create, and test new chemical entities predicted to prevent opioid induced glial activation, thereby optimizing opioid analgesia while preventing negative consequences of clinical opioid use.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21DA026950-01
Application #
7707898
Study Section
Special Emphasis Panel (ZDA1-MXS-M (02))
Program Officer
Purohit, Vishnudutt
Project Start
2009-07-01
Project End
2011-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
1
Fiscal Year
2009
Total Cost
$136,003
Indirect Cost
Name
University of Colorado at Boulder
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80309
Northcutt, A L; Hutchinson, M R; Wang, X et al. (2015) DAT isn't all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Mol Psychiatry 20:1525-37
Brown, Peter N; Yin, Hang (2013) PNA-based microRNA inhibitors elicit anti-inflammatory effects in microglia cells. Chem Commun (Camb) 49:4415-7
Cheng, Kui; Wang, Xiaohui; Zhang, Shuting et al. (2012) Discovery of small-molecule inhibitors of the TLR1/TLR2 complex. Angew Chem Int Ed Engl 51:12246-9
Hutchinson, M R; Northcutt, A L; Hiranita, T et al. (2012) Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci 32:11187-200
Zhang, Shuting; Cheng, Kui; Wang, Xiaohui et al. (2012) Selection, synthesis, and anti-inflammatory evaluation of the arylidene malonate derivatives as TLR4 signaling inhibitors. Bioorg Med Chem 20:6073-9
Due, Michael R; Piekarz, Andrew D; Wilson, Natalie et al. (2012) Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling. J Neuroinflammation 9:200
Wang, Xiaohui; Loram, Lisa C; Ramos, Khara et al. (2012) Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A 109:6325-30
Cheng, Kui; Wang, Xiaohui; Yin, Hang (2011) Small-molecule inhibitors of the TLR3/dsRNA complex. J Am Chem Soc 133:3764-7
Liu, Liping; Ghosh, Nilanjan; Slivka, Peter F et al. (2011) An MD2 hot-spot-mimicking peptide that suppresses TLR4-mediated inflammatory response in vitro and in vivo. Chembiochem 12:1827-31
Chavez, Sherry A; Martinko, Alexander J; Lau, Corinna et al. (2011) Development of ?-amino alcohol derivatives that inhibit Toll-like receptor 4 mediated inflammatory response as potential antiseptics. J Med Chem 54:4659-69

Showing the most recent 10 out of 15 publications