Psychostimulant abuse and addiction is a crushing public health problem. Our laboratories have begun to decipher the functional effects of glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) stimulation on dopamine uptake, clearance, and trafficking of presynaptic dopamine transporters. GLP-1 is an incretin hormone and neuropeptide that is released in response to food intake. GLP-1 acts through both peripheral and central mechanisms to regulate energy homeostasis and the hedonic components of food intake. We and others have hypothesized that peptides that modulate feeding behavior may also regulate brain circuitry responsible for drug reward. In fact, we recently discovered that systemic administration of the GLP-1 long-lasting analogue exendin-4, which is already used clinically in the treatment of type 2 diabetes, reduces the rewarding effects of cocaine in mice. Within the brain, GLP-1Rs are expressed within the hypothalamus, ventral tegmental area, and nucleus accumbens, but are especially enriched in the lateral septum (LS). The LS is (re)emerging as a crucial brain region involved in the hedonic properties of psychostimulants. In the current application, we will first define cellular heterogeneity in GLP-1 receptor expression patterns within the LS and test the hypothesis that GLP-1Rs modulate dopamine neurotransmission and signaling within the LS (Aim 1). These studies will use modern molecular neuroanatomical, biochemical and electrochemical methods. Next, we will test the hypothesis that local GLP-1 receptor signaling within the LS mediates the therapeutic effects of systemic exendin-4 on cocaine reward (Aim 2). We will also examine cocaine- and GLP-1 receptor agonist-induced changes in cellular activation. Our studies will use both pharmacological and genetic approaches, taking advantage of a recently created GLP-1R conditional knockout mouse. These multidisciplinary studies will provide essential foundational knowledge of the role of the GLP-1 receptor in psychostimulant abuse. The commercial availability of several FDA-approved GLP-1 agonists for the treatment of diabetes offers readily translational opportunities to improve human outcomes in psychostimulant abuse.

Public Health Relevance

The studies contained in this application will help us understand the neurobiological mechanisms by which glucagon-related peptide 1 (GLP-1) receptors alter brain chemistry and may represent a novel mechanism to treat psychostimulant drug abuse.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Special Emphasis Panel (ZDA1)
Program Officer
Pilotte, Nancy S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Martin, Melissa M; Graham, Devon L; McCarthy, Deirdre M et al. (2016) Cocaine-induced neurodevelopmental deficits and underlying mechanisms. Birth Defects Res C Embryo Today 108:147-73
Reddy, I A; Pino, J A; Weikop, P et al. (2016) Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. Transl Psychiatry 6:e809
Sørensen, Gunnar; Reddy, India A; Weikop, Pia et al. (2015) The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice. Physiol Behav 149:262-8
Ross, Emily J; Graham, Devon L; Money, Kelli M et al. (2015) Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 40:61-87