The purpose of this project is to develop multicompartment neuronal cell microculture chambers in a 96 well format to produce high throughput (HTP) in vitro neurocircuitry models using human neuronal cells. This platform allows HTP phenotyping of neurons derived from induced pluripotent stem (iPS) cell lines carrying risk gene alleles associated with susceptibility towards substance abuse. In particular, this work will aid the understanding of synaptic plasticity changes associated with the pathogenic behaviors of drugs of abuse, including addiction to cocaine, nicotine and alcohol. Synaptic plasticity changes, especially in the mesolimbic system, are associated with addictive behavior and are not recapitulated with existing cell culture systems using human neurons. We have constructed a multicompartment, microfluidic system that allows us to model the neuronal circuitry of the mesolimbic reward system. However, given the increasing number of iPS cell lines available, the need to include genome edited versions of each genotype with isogenic genetic background, the multiple subtypes of neurons required, as well as the need for HTP screening for small molecule compounds that can reverse the alterations associated with the gene variants, the current analysis is difficult or impossible to scale up to meet with the need fo HTP analysis of defined neurocircuitry. Thus, in this CEBRA application, we propose to build upon our previous success in creating neurocircuitry models by constructing a microfabricated HTP platform, compatible with the GE IN CELL high-content imaging system, for both morphological and functional (Ca2+-imaging) analyses. Following construction of the HTP system, we will validate it by focusing on a well-studied genetic variant associated with increased alcohol consumption, nicotine and cocaine abuse, containing an altered ?-opioid receptor (MOR) sequence that alters intracellular signaling. The Single Nucleotide Polymorphism (SNP) rs1799971 produces a non-synonymous amino acid substitution in MOR (OPRM1 A118G), replacing Asparagine 40 (MOR N40) with a variant with Aspartate (MOR D40). We have prepared multiple iPS cell lines carrying either homozygous MOR N40 or MOR D40 from subjects with well-characterized alcohol abuse, nicotine dependence-related behaviors, and known ethnicity. Our goal in this exploratory project is to develop a novel HTP experimental paradigm to support in vitro mini- neurocircuits mimicking the midbrain DA neurocircuitry that is formed by neurons generated from patient specific iPS cells carrying defined risk gene variants, to allow the screening of small molecule compounds to reduce phenotypes consistent with addictive behaviors.

Public Health Relevance

While much has been learned about the genetics of addiction, there is no adequate system for reconstructing neural networks of human neurons to study functional changes caused drug usage in the presence of genetic risk factors. We propose to construct and evaluate a custom multicompartment high-throughput culture chamber platform in a 96 well format for screening large numbers of neuronal networks for functional changes, relying on induced pluripotent stem cells from specific subjects, the latest techniques for turning cells into neurons, and high-throughput microscopy for evaluating functional alterations. Our goal is to understand the link between genetic risk factors and drug abuse to devise novel treatments that could be custom-tailored to a person's genetic makeup, enhancing the success of the therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21DA039686-01
Application #
8914883
Study Section
Special Emphasis Panel (ZDA1)
Program Officer
Wu, Da-Yu
Project Start
2015-04-01
Project End
2017-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Rutgers University
Department
Neurosciences
Type
Schools of Arts and Sciences
DUNS #
001912864
City
Piscataway
State
NJ
Country
United States
Zip Code
Zahn, Jeffrey D (2018) Microdevice Development and Artificial Organs. Artif Organs :
Gaspar, John M; Hart, Ronald P (2017) DMRfinder: efficiently identifying differentially methylated regions from MethylC-seq data. BMC Bioinformatics 18:528
Fantuzzo, Joseph A; De Filippis, Lidia; McGowan, Heather et al. (2017) ?Neurocircuitry: Establishing in vitro models of neurocircuits with human neurons. Technology (Singap World Sci) 5:87-97
Fantuzzo, J A; Mirabella, V R; Hamod, A H et al. (2017) Intellicount: High-Throughput Quantification of Fluorescent Synaptic Protein Puncta by Machine Learning. eNeuro 4:
Li, Ying; Hao, Hailing; Swerdel, Mavis R et al. (2017) Top2b is involved in the formation of outer segment and synapse during late-stage photoreceptor differentiation by controlling key genes of photoreceptor transcriptional regulatory network. J Neurosci Res 95:1951-1964
Carlson, Aaron L; Bennett, Neal K; Francis, Nicola L et al. (2016) Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds. Nat Commun 7:10862
Bennett, Neal K; Chmielowski, Rebecca; Abdelhamid, Dalia S et al. (2016) Polymer brain-nanotherapeutics for multipronged inhibition of microglial ?-synuclein aggregation, activation, and neurotoxicity. Biomaterials 111:179-189
Hart, Ronald P; Goff, Loyal A (2016) Long noncoding RNAs: Central to nervous system development. Int J Dev Neurosci 55:109-116
De Filippis, Lidia; Halikere, Apoorva; McGowan, Heather et al. (2016) Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain 9:51
Lin, Lucy; Swerdel, Mavis R; Lazaropoulos, Michael P et al. (2015) Spontaneous ATM Gene Reversion in A-T iPSC to Produce an Isogenic Cell Line. Stem Cell Reports 5:1097-1108