The purpose of this project is to determine the post-transcriptional regulation that changes the progression of oral cancer via the RNA-binding protein FXR1 and its mRNA translational control that govern cellular senescence. FXR1 was considered as a critical regulator of gene expression in most of the eukaryotic cells by controlling mRNA stability and translation. Thus, the main goal of this project is to understand the molecular mechanisms of FXR1-mediated mRNA translation and their implications in oral squamous cell carcinoma (OSCC) cellular senescence. Cellular senescence is an important mechanism for preventing the proliferation of potential cancer cells. Hence, underpinning the mechanistic aspects of cellular machinery by dissection the protein expression profiles provides novel biomarkers and/or therapeutic targets. Our laboratory has extensive experience in studying RNA-binding proteins and high throughput analysis of protein expression by pulsed-stable isotope labeling with amino acids in cell culture (pSILAC). We have developed a genome- wide shRNA screen of RBPs to test the cellular senescence in oral cancer cells. By studying oral cancer cells for cellular senescence, we have discovered FXR1 is overexpressed and depletion of FXR1 induces cellular senescence. Interestingly, FXR1 is a major player to control the expression of protein at the translational level that could mediate cellular senescence. Hence, we plan to systematically study the phenotypic changes of cellular senescence in oral cancer cells by understanding the expression of proteins that are controlled by FXR1. Thus, our central hypothesis is to understand how overexpression of FXR1 in oral cancer cells alter the protein expression by modulating RNA processing machinery to control cellular senescence. We propose the following specific aims to test this hypothesis: 1) to determine the critical role of FXR1 in bypassing OSCC senescence. We will test if the gain- and loss-of-function of FXR1 affects senescence in OSCC cells through various cell biological senescence assays, 2) to determine the consequence of FXR1 dysregulation on the cellular proteome. The protein targets of FXR1 will be identified using pulsed-Stable Isotope Labeling of Cells in cultured OSCC cells with click-chemistry Bioorthogonal Noncanonical Amino Acid Tagging (pSILAC- BONCAT) and Mass Spectrometry.

Public Health Relevance

Completing the goals of this proposal will enhance our understanding of the molecular mechanisms of cellular senescence that regulate oral cancer cells. This will be critical for devising new treatments that selectively target these aggressive and therapy-resistant cancer cells. This will enable us to ultimately translate these findings into the clinic in order to sensitize tumors to conventional therapies by targeting critical regulation of senescent proteins by RNA-binding protein FXR1 mediated post-transcriptional mechanisms.

National Institute of Health (NIH)
National Institute of Dental & Craniofacial Research (NIDCR)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Molecular Oncogenesis Study Section (MONC)
Program Officer
Wang, Chiayeng
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical University of South Carolina
Schools of Medicine
United States
Zip Code
Janakiraman, Harinarayanan; House, Reniqua P; Gangaraju, Vamsi K et al. (2018) The Long (lncRNA) and Short (miRNA) of It: TGF?-Mediated Control of RNA-Binding Proteins and Noncoding RNAs. Mol Cancer Res 16:567-579
House, Reniqua; Majumder, Mrinmoyee; Janakiraman, Harinarayan et al. (2018) Smoking-induced control of miR-133a-3p alters the expression of EGFR and HuR in HPV-infected oropharyngeal cancer. PLoS One 13:e0205077
Qie, Shuo; Majumder, Mrinmoyee; Mackiewicz, Katarzyna et al. (2017) Fbxo4-mediated degradation of Fxr1 suppresses tumorigenesis in head and neck squamous cell carcinoma. Nat Commun 8:1534