Living tissues are intricate ensembles of cells of different types embedded in complex and well defined structures of extracellular matrix (ECM). Cell orientation and migration within tissues can be guided both by the organization of ECM and gradients of extracellular chemical ligands. Cell migration is essential for such diverse processes as tissue repair and regeneration following injury, innate immune response, cancer metastasis and various developmental events. Unfortunately, our ability to analyze cell polarization and migration is severely limited by the lack of devices capable of precise definition of the cell micro-environment, both in terms of gradients of chemical cues and nano-scale level control of the cell substratum. In this application, we propose to develop and test a series of biomimetic micro-devices combining the advantages of precise definition of both nano-topographic features and micro-scale fluid flows leading to generation of complex sets of guidance cues. We hypothesize that the combined effects of the nano-topography and spatially distributed signaling ligands will be integrated into the cell polarity and migration decisions through regulated localization (and dimensions) of focal adhesions and redistribution of the occupancy of the receptor binding sites. We anticipate that the proposed work will result in both increased understanding of the fundamental aspects of establishment of cell polarity and guidance, and allow us to establish general principles for development of more precise and defined scaffolds for tissues engineering.

Public Health Relevance

This research is aimed at understanding of how diverse cell functions are controlled by the nano-scale features of cell micro-environment. These features mimic the extracellular matrix found in the natural cell micro-environment, but can also be used to guide cell behavior in a desired manner. Therefore, the exploratory research proposed in this application will have important implications for advanced tissues engineering problems, of high potential relevance to public health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21EB008562-02
Application #
7578225
Study Section
Special Emphasis Panel (ZRG1-BST-M (50))
Program Officer
Hunziker, Rosemarie
Project Start
2008-04-01
Project End
2010-03-31
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
2
Fiscal Year
2009
Total Cost
$177,766
Indirect Cost
Name
Johns Hopkins University
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Molitoris, Jared M; Paliwal, Saurabh; Sekar, Rajesh B et al. (2016) Precisely parameterized experimental and computational models of tissue organization. Integr Biol (Camb) 8:230-242
Ahn, Eun Hyun; Kim, Younghoon; Kshitiz et al. (2014) Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials 35:2401-2410
Kshitiz; Hubbi, Maimon E; Ahn, Eun Hyun et al. (2012) Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors. Sci Signal 5:ra41
Kshitiz; Hubbi, Maimon E; Ahn, Eun Hyun et al. (2012) Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors. Sci Signal 5:ra41
Kshitiz; Park, JinSeok; Kim, Peter et al. (2012) Control of stem cell fate and function by engineering physical microenvironments. Integr Biol (Camb) 4:1008-18
Huang, Nai-Jia; Zhang, Liguo; Tang, Wanli et al. (2012) The Trim39 ubiquitin ligase inhibits APC/CCdh1-mediated degradation of the Bax activator MOAP-1. J Cell Biol 197:361-7
Park, JinSeok; Kim, Hong-Nam; Kim, Deok-Ho et al. (2012) Quantitative analysis of the combined effect of substrate rigidity and topographic guidance on cell morphology. IEEE Trans Nanobioscience 11:28-36
Kshitiz; Kim, Deok-Ho; Beebe, David J et al. (2011) Micro- and nanoengineering for stem cell biology: the promise with a caution. Trends Biotechnol 29:399-408
Kim, Deok-Ho; Lee, Hyojin; Lee, Young Kwang et al. (2010) Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Adv Mater 22:4551-66
Kim, Deok-Ho; Lipke, Elizabeth A; Kim, Pilnam et al. (2010) Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci U S A 107:565-70

Showing the most recent 10 out of 14 publications