Diabetes, obesity, and hypertension among other cardiovascular diseases are large risk factors for platelet hyperreactivity. Despite the importance, the molecular mechanisms of the platelet hyperreactivity are still unknown. Our long-term goal is to integrate biomechanical and biochemical approaches to understand the disease mechanisms in patients with diabetes, obesity and cardiovascular diseases, and to use this knowledge to design tools that facilitate physicians' decisions on treatment of these diseases - tools to diagnose, tools to follow disease progression, and tools to follow treatment courses. Using a unique single-platelet Biomembrane Force Probe (BFP) assay, we have gathered preliminary evidence that there exists an intermediate state of platelets (discoid in shape but express low-level markers of activation) and this state is primarily characterized by having integrin molecules adopting a conformation that gives rise to intermediate affinity. We hypothesize that this intermediate state plays an important role in platelet hyperactivity in diabetics. While this assay is sensitive and powerful for probing molecular interactions on single platelets, it is very labor-intensive and low throughput. The goal of this project is to design a simple-to-use and yet high-throughput and highly informative microfluidic approach to understand sequences of molecular events that lead to platelet activation. We will obtain detailed characterization of the intermediate state, its stability, and the kinetics of state changs of the normal and diseased platelets using this approach. Validation of the new assay and proof of the hyperactivity hypothesis will allow this assay to be further developed in the future for clinical diagnosis or to follow treatment of atherothrombosis in patients. We have assembled a team of engineers and clinicians for this project. The work is innovative because no such high-throughput assay that yields mechanistic insights (and only using a drop of blood) is currently available, and that understanding the role of the intermediate state of platelets, particularly in diabetes, will lead to a significant improvement in diagnostic and treatment for platelet hyperactivity disorders.
Increased platelet reactivity is a well-known feature of diabetes mellitus, obesity, hypertension, hyperlipidaemia and cigarette smokers, all important risk factors for atherothrombosis and cardiovascular disease. This project aims at generating an assay potentially suitable for diagnosis and following treatment.
Zhou, F; Chen, Y; Felner, E I et al. (2018) Microfluidic auto-alignment of protein patterns for dissecting multi-receptor crosstalk in platelets. Lab Chip 18:2966-2974 |
Jackson-Holmes, E L; McDevitt, T C; Lu, H (2017) A microfluidic trap array for longitudinal monitoring and multi-modal phenotypic analysis of individual stem cell aggregates. Lab Chip 17:3634-3642 |
Jackson, E L; Lu, H (2016) Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integr Biol (Camb) 8:672-83 |
Liu, Yi; Lu, Hang (2016) Microfluidics in systems biology-hype or truly useful? Curr Opin Biotechnol 39:215-220 |