The overarching goal of this proposal is to develop a practical, externally controlled strategy to enhance the performance of injectable drug delivery systems for the local treatment of inoperable solid tumors. This noninvasive approach addresses the critical unmet need in local drug delivery for cancer treatment ? insufficient penetration of the drug into the tumors. Building upon a large body of work already applying ultrasound to enhance tumor drug delivery from nanoparticles, we will now explore a novel ultrasound application in enhancing delivery from intratumoral drug-eluting implants. We will test the platform approach in primary liver tumors (hepatocellular carcinoma or HCC), which continue to be difficult to treat systemically with chemotherapy and mostly cannot be resected surgically (in 80% of cases). Developing effective alternative treatments for liver cancer specifically, and for unresectable tumors in general, has the potential to have a high clinical impact, as few successful approaches are currently available. This MPI proposal combines drug delivery and acoustic physics and instrumentation expertise of two senior investigators. We also engage an interventional radiologist who treats liver tumors daily using image-guided techniques, and an expert in molecular imaging and the woodchuck model of spontaneous viral hepatitis infection-induced HCC to test the optimized treatment in the most clinically relevant animal model available. The research will be carried out in three specific aims.
In Aim 1, we will develop the injectable, in situ forming implant formulations and will test a series of parameters to determine the most effective ones for acoustic enhancement of the drug distribution in acrylamide phantoms.
In Aim 2, the optimized formulation and ultrasound parameters will be tested in a liver tumor model in rats to determine the extent of increase in distribution in vivo. Finally, in Aim 3, once the strategy has been thoroughly evaluated in the rat model, we will utilize ultrasound-enhanced local drug delivery to treat naturally-occurring HCC in a woodchuck model. This will serve as the ultimate demonstration of clinical relevance. At the completion of this project, we will have developed a new strategy for local treatment of inoperable solid tumors. With ultrasound enhancement, the drug delivery system which will be able to generate greater treatment volumes than previous approaches, and will thus be more effective at treating unresectable liver cancer than currently available options.

Public Health Relevance

At the time of liver cancer diagnosis, the majority of patients have tumors which cannot be surgically removed. This presents a need for strategies that can gain improved local control over these cancers without having broad systemic side effects. The approach proposed in this application localizes chemotherapy at the tumor site by encapsulating the active agents in polymer implants that can be injected directly into the tumor under ultrasound guidance. Once implants are in place, ultrasound is also used to stimulate drug release and improve the penetration of the drug throughout the tumor volume. With ultrasound enhancement, the drug delivery system will be able to generate larger treatment volumes and will thus be more effective at treating the tumors. Developing effective alternative treatments for liver cancer specifically, and for unresectable tumors in general, has the potential to have a high clinical impact, as few successful approaches are currently available.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21EB026324-02
Application #
9782947
Study Section
Biomaterials and Biointerfaces Study Section (BMBI)
Program Officer
King, Randy Lee
Project Start
2018-09-15
Project End
2020-06-30
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
2
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Case Western Reserve University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106