High intensity focused ultrasound (HIFU) modalities, such as histotripsy, have been used successfully to emulsify soft organs, like the heart and liver, but highly collagenous tissues, like tendons, have proven resistant to mechanical emulsification with histotripsy. Recently, histotripsy was shown to initiate an immune response and release biomarkers. If histotripsy can successfully emulsify collagenous tissues, it has the potential to initiate a healing response by inducing inflammation and subsequently release healing factors. With the high clinical prevalence of tendon injuries, establishing whether histotripsy can create microdamage in collagenous tendons to promote healing has the potential for long-term impact. Rotator cuff tear is a highly prevalent cause of shoulder pain, which is why patients seek medical treatment. Surgical repair is a common treatment for rotator cuff tear, but fails up to 90% of the time, likely from the high mechanical loading the rotator cuff experiences in its dual roles with joint mobility and stability. Others have used dry needling (DN), which involves repeated puncturing of the tendon with a fine-gauge needle to induce microdamage and release healing factors, but adoption of this approach is not wide-spread. Development of techniques that can noninvasively promote healing while maintaining mechanical integrity of the muscle-tendon units are desperately needed. Demonstration of histotripsy therapy for collagenous tissue emulsification would provide a clinically transferrable tool to immediately supplement current treatment options of a contemporary clinical problem. Here, we propose to establish non-invasive histotripsy protocols that produce better indicators of tendon healing compared to DN, while simultaneously maintaining tendon's mechanical properties. These goals will be accomplished by: 1) testing novel histotripsy protocols to induce microdamage in collagen gels and ex vivo rat tendons; 2) evaluating the mechanical properties of tendon following histotripsy and DN, and develop a finite element model to evaluate parameters and perform predictive analyses; and 3) determining whether histotripsy enhances collagenous tissue healing in vivo in a pilot survival study in rats. This innovative work seeks to demonstrate that histotripsy can successfully emulsify collagenous tissues, and enhance the release of healing factors. Once feasibility has been demonstrated, the methods and models developed in this project will be scaled to examine histotripsy in larger animal models and humans. Long term, outcomes will lead to histotripsy emulsification of other collagenous tissues as well as clinical translation of tendon healing protocols, which has the potential to revolutionize treatment for rotator cuff tear and other collagenous tissue injuries.

Public Health Relevance

Histotripsy is a therapeutic ultrasound technique that can emulsify soft organs, but highly elastic tissues, like tendon, are resistant to emulsification by histotripsy. Shoulder pain is the third most frequent complaint treated by clinicians, with annual treatment costs exceeding $7 billion. We propose developing innovative histotripsy protocols to emulsify collagenous tissues, looking specifically at creating microdamage in tendons and promoting a healing response, resulting in the development of a novel clinical treatment option for patients with rotator cuff tear and other tendon injuries.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21EB027886-01
Application #
9722376
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
King, Randy Lee
Project Start
2019-05-09
Project End
2022-01-31
Budget Start
2019-05-09
Budget End
2020-01-31
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Pennsylvania State University
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
003403953
City
University Park
State
PA
Country
United States
Zip Code
16802