Arsenic (As) contamination of soils and water occurs worldwide-including in the U.S.-originating from both environmental and anthropogenic sources. Naturally-occurring alluvial As contaminates groundwater in South and Southeast Asia, and has caused wide-scale poisoning of a susceptible and malnourished populace. Chronic As exposure affects over 25 million people in Bangladesh alone. Industrial sources of arsenic-e.g., arsenic- containing pesticides in agriculture-also contribute to global exposure. In the United States (US), As tops the hazardous substance priority list of the Agency for Toxic Substances and Disease Registries, and 13 million Americans are exposed to levels exceeding the US Water Quality Standards. Chronic exposure leads to arsenicosis, which includes melanosis, keratosis, and cardiovascular effects, as well as lung, bladder, kidney, and skin cancer. Chronic As exposure can also affect childhood intellectual function and development. There is no effective therapy for arsenicosis, emphasizing the importance of prevention and/or novel therapeutic approaches. Prevention requires effective risk-assessment, which also lays the groundwork for intervention design and treatment. The central hypothesis of this proposal is that As ingestion alters the structure and function of the human gut microbiota and that differences in the human gut microbiota contribute to the observed variation in the presence/absence of arsenicosis, given the same level and route of As environmental exposure through groundwater and rice. To test this hypothesis, the principal investigators will pursue the following specific aims:
Specific Aim : To determine the effects of exogenous As on the gut microbiota and on the resulting transformation of As using anaerobic bioreactors in the absence/presence of arsenic-amended media;
Specific Aim 2 : To characterize the frequency and diversity of microbial genes related to As transformation in the gut microbiota of healthy humans with no As exposure, as well as of exposed individuals with/without arsenicosis;
and Specific Aim 3 : To characterize variations in taxonomic composition and functional potential of the gut microbiota of arsenic-exposed individuals with and without arsenicosis. To accomplish these specific aims they will make use of fecal specimens from non-exposed, healthy human individuals from the US, as well as fecal samples from subjects in Bangladesh with (1) chronic As exposure and arsenicosis, (2) chronic exposure and no arsenicosis, or (3) no exposure and no arsenicosis (control group). This multidisciplinary project lays the groundwork for microbiome-related risk assessment and further studies which will inform novel interventions for arsenicosis, a disease affecting millions worldwide.

Public Health Relevance

Arsenic (As) contamination of soils and water occurs worldwide-including in the US, originating from both environmental and anthropogenic sources; in Bangladesh and other regions of South and Southeast Asia it has caused wide-scale poisoning of a susceptible and malnourished populace. Prevention requires effective risk assessment, which also lays the groundwork for intervention design and treatment. The intent is to hypothesize that differences in the structure and function of the human gut microbiota contribute to the observed differences in presence/absence of arsenicosis, given the same As environmental exposure and ingestion through groundwater and rice, and propose to address this hypothesis by examining the effect of As on fecal microbial communities in laboratory bioreactors, and by characterizing variation in taxonomic composition and functional potential of the gut microbiota of arsenic-exposed individuals in Bangladesh with and without arsenicosis, with the goal of microbiome-related risk assessment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21ES023387-02
Application #
8889677
Study Section
Special Emphasis Panel (ZES1-JAB-J (MB))
Program Officer
Chadwick, Lisa
Project Start
2014-07-15
Project End
2017-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
2
Fiscal Year
2015
Total Cost
$318,347
Indirect Cost
$118,347
Name
Stanford University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304