The goal of this proposal is to assess the feasibility of an all-molecular method for activity-dependent feedback control of neuronal activity. We propose to generate calcium sensitive light emitting molecules (bioluminescent enzymes, luciferases) that drive light sensing optogenetic elements (channels or ion pumps, opsins) to control membrane voltage at the level of single cells for positive and negative feedback control. By adjusting calcium sensitivity and molecule location, light production can be made specific to large events such as bursts, or sensitive to individual spikes or single channel activity. By coupling these new luciferases to opsins, highly specific sensing of calcium at its source will trigger opsin activation for augmenting or suppressing neuronal activity, allowing a high degree of temporal and spatial precision in feedback control. Goals will be achieved by pursuing three aims: 1) Developing a calcium sensing split luciferase with significantly improved speed, brightness and range of sensitivity; 2) Targeting these new molecules to subcellular domains to enable highly specific biological outcomes; 3) Linking these new innovations to optogenetic readouts. Our strategy is non- invasive and it could be applied to large-scale manipulation of neural activity in behaving animals or in humans, where non-invasive, rapid feedback control of neuronal activity could be used to regulate clinically relevant activity in the brain. Our experiments are early stage, require proof of principle feasibility studies, but they have the potential to lead to a novel strategy to regulate activity only during periods of abnormal neuronal firing, such as attenuating runaway activity or amplifying local fluctuations. The molecular tools generated towards these feasibility experiments will be highly valuable in their own right, and achieving the goal of neural activity regulated self-control of neurons will be transformative.

Public Health Relevance

The proposed research is relevant to public health because the development of crucial new technologies for non-invasive feedback control of neural activity is ultimately expected to allow direct causal study of basic mechanisms and help define therapeutic strategies for treating devastating neurological and psychiatric disorders, which currently have a profound negative impact on public health. The proposed research is relevant to NIH's mission in that it directly addresses the call for developing novel tools to facilitate recording and manipulation of neural activity.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21EY026427-01
Application #
9056134
Study Section
Special Emphasis Panel (ZEY1-VSN (01))
Program Officer
Wujek, Jerome R
Project Start
2015-09-02
Project End
2017-08-31
Budget Start
2015-09-02
Budget End
2016-08-31
Support Year
1
Fiscal Year
2015
Total Cost
$241,375
Indirect Cost
$44,500
Name
Central Michigan University
Department
Type
Schools of Medicine
DUNS #
624134037
City
Mount Pleasant
State
MI
Country
United States
Zip Code
48859
Zenchak, Jessica R; Palmateer, Brandon; Dorka, Nicolai et al. (2018) Bioluminescence-driven optogenetic activation of transplanted neural precursor cells improves motor deficits in a Parkinson's disease mouse model. J Neurosci Res :
Prakash, Mansi; Medendorp, William E; Hochgeschwender, Ute (2018) Defining parameters of specificity for bioluminescent optogenetic activation of neurons using in vitro multi electrode arrays (MEA). J Neurosci Res :
Park, Sung Young; Song, Sang-Ho; Palmateer, Brandon et al. (2017) Novel luciferase-opsin combinations for improved luminopsins. J Neurosci Res :
Berglund, Ken; Tung, Jack K; Higashikubo, Bryan et al. (2016) Combined Optogenetic and Chemogenetic Control of Neurons. Methods Mol Biol 1408:207-25
Berglund, Ken; Clissold, Kara; Li, Haofang E et al. (2016) Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. Proc Natl Acad Sci U S A 113:E358-67