Base-selective heavy atom labels for electron microscopy-based DNA sequencing Project Summary/Abstract The development of inexpensive and rapid DNA sequencing technology remains a major challenge of broad scientific interest. Preliminary work at Halcyon Molecular has shown that transmission electron microscopy (TEM) can be used to obtain ultra-fast ultra-low-cost DNA sequences. Since efficient electron scattering to a detector is highly dependent on atomic number (Z), it is possible to label single stranded DNA (ssDNA) with heavy atoms. To test the limits of this trend, we propose a multipronged approach to selectively prepared metal-DNA base pair complexes. Our effort will be synergistic, taking advantage of the experience of the Toste group in organometallic and heavy atom cluster synthesis, and the capabilities of Halcyon Molecular in manipulating DNA and performing TEM. For this proposal, we are focusing on the selective labeling of DNA bases and the development of an appropriate assay to evaluate our success. Two general synthetic methods will be investigated in order to develop distinct labeling protocols. First, triosmium (ZOs = 76), tetrairidium (ZIr = 77) and trigold (ZAu = 79) clusters tethered to a group that selectively react with (alkylating reagents) or bind (platinum diamine complexes) purine bases will be explored. Incorporation of gold (ZAu = 79) and mercury (ZHg = 80) atoms through direct metal-metal bonds to the osmium atoms will also be explored. In this case, the labels would appear as intense spots in the TEM spectra. For the complimentary pyrimidine label, osmium tetraoxide bipyridine will be the selective binding agent thymine and cytosine. Using the bipyridine ligand as a scaffold for functionalization, additional osmium, platinum (ZPt = 78) or uranium (ZU = 92) atoms may be incorporated. A linear arrangement of metal atoms would allow a positional vector to be drawn towards the corresponding base. Proof-of-concept experiments will be performed using nuclear magnetic resonance (NMR) spectroscopy using individual DNA bases. If successful, testing will be performed on single DNA strands and sequenced using TEM. The success of these methods will enable the base-selective labeling of DNA with metal atoms and help develop ultra-fast ultra-low-cost DNA sequencing technology. The assembly of a whole human genome with our pilot-scale instrument can demonstrate TEM sequencing's potential for high consensus accuracy, extremely long (>150kb) reads, and lack of sequence specific bias in molecule deposition and readout. The subsequent, commercial availability of whole human genome sequencing using this technology (with expected >99.9999% consensus accuracy and completeness in <10 minutes/genome, at a cost of <$100) will enable new opportunities in translational medicine and foster many new discoveries by NIH investigators.

Public Health Relevance

The proposed program aims to develop heavy atom organometallic compounds for ssDNA base-selective labeling for use in ultra-low-cost DNA sequencing technology based on single- atom sensitivity transmission electron microscopy (TEM).

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Exploratory/Developmental Grants (R21)
Project #
3R21HG005915-02S1
Application #
8520467
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Schloss, Jeffery
Project Start
2010-09-01
Project End
2013-06-30
Budget Start
2011-07-01
Budget End
2013-06-30
Support Year
2
Fiscal Year
2012
Total Cost
$88,557
Indirect Cost
$31,607
Name
University of California Berkeley
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Kanavarioti, Anastassia; Greenman, Kevin L; Hamalainen, Mark et al. (2012) Capillary electrophoretic separation-based approach to determine the labeling kinetics of oligodeoxynucleotides. Electrophoresis 33:3529-43