Neurokinin B (NK-B) is a member of tachykinin family of peptides. Classically, NK-B expression and function was studied in the context of the nervous system. However overexpression of NK-B has been implicated in the pregnancy-associated disorder preeclampsia, which is characterized by defective remodeling of the placental vasculature and systemic vascular deregulation. We demonstrated that NK-B reversibly inhibits endothelial cell vascular network assembly in vitro on Matrigel and opposes angiogenesis in vivo. Mechanistic analyses revealed that NK-B signaling inhibited angiogenic signal-induced expression of vascular endothelial growth factor receptor1 (VEGFR1) and VEGFR2, and reduced endothelial cell migration. The objective of this proposal is to determine the regulatory mechanisms, by which NK-B inhibits angiogenic signal-induced VEGFR1 and VEGFR2 induction, and endothelial cell migration. We will institute two specific aims to address this. In the first Specific Aim we will determine how neurokinin B represses angiogenic signal-dependent VEGFR induction. Transcription factors Ets1 and HIF-2alpha have been implicated in the transcriptional regulation of VEGFR1 and VEGFR2. We will test whether Ets1 and HIF-2alpha directly activate transcription of VEGFR1 and VEGFR2 in response to angiogenic signals in vitro and in vivo, and whether NK-B signaling represses transcription by blocking Ets1/HIF-2alpha chromatin occupancy or a critical function post-occupancy. In the second Specific Aim we will determine the mechanism of NK-B-mediated inhibition of endothelial cell migration. We hypothesize that, in endothelial cells, NK-B signaling modulates critical signaling pathways that mediate directed cell migration. To test this hypothesis we will document signal transduction events in endothelial cells stimulated to undergo migration and the effect of NK-B on those events, including phosphorylation of focal adhesion kinase, paxillin, p130Cas, spatial and temporal association of these molecules to form focal adhesions, and activation of Rho family of GTPases Rac1 and CDC42.

Public Health Relevance

Angiogenesis, the development of new blood vessels from existing vasculature, is a key event in many physiological processes, like organ growth and development, wound healing, and reproduction. Angiogenesis is also critical for certain pathological disorders including tumor growth/metastasis. Information gleaned from these studies will contribute to our understanding of the molecular mechanisms of angiogenesis and hopefully will lead to novel therapeutic modalities.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21HL094892-01A1
Application #
7738205
Study Section
Special Emphasis Panel (ZRG1-CVS-Q (90))
Program Officer
Goldman, Stephen
Project Start
2009-08-05
Project End
2011-07-31
Budget Start
2009-08-05
Budget End
2010-07-31
Support Year
1
Fiscal Year
2009
Total Cost
$225,000
Indirect Cost
Name
University of Kansas
Department
Pathology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Paul, Arindam; Danley, Marsha; Saha, Biswarup et al. (2015) PKC? Promotes Breast Cancer Invasion by Regulating Expression of E-cadherin and Zonula Occludens-1 (ZO-1) via NF?B-p65. Sci Rep 5:12520
Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar et al. (2014) Regulation of mitochondrial function and cellular energy metabolism by protein kinase C-?/?: a novel mode of balancing pluripotency. Stem Cells 32:2880-92
Paul, A; Gunewardena, S; Stecklein, S R et al. (2014) PKC?/? signaling promotes triple-negative breast cancer growth and metastasis. Cell Death Differ 21:1469-81
Rajendran, Ganeshkumar; Dutta, Debasree; Hong, James et al. (2013) Inhibition of protein kinase C signaling maintains rat embryonic stem cell pluripotency. J Biol Chem 288:24351-62
Home, Pratik; Saha, Biswarup; Ray, Soma et al. (2012) Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc Natl Acad Sci U S A 109:7362-7
Dutta, Debasree; Ray, Soma; Home, Pratik et al. (2011) Self-renewal versus lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance. Stem Cells 29:618-28
Dutta, Debasree; Ray, Soma; Home, Pratik et al. (2010) Regulation of angiogenesis by histone chaperone HIRA-mediated incorporation of lysine 56-acetylated histone H3.3 at chromatin domains of endothelial genes. J Biol Chem 285:41567-77