De-differentiation of adult somatic cells into multipotent progenitor cells might provide an attractive and alternative source for therapeutic cloning to generate pluripotent, autologous stem cells for regenerative medicine. Currently, the benefit of adult stem cell therapies appears to be limited to vascular repair without affecting myogenesis and/or myocardial regeneration. While improved vascularization appears to have the real potential clinical benefit of endothelial progenitor cells (EPC) therapy in patients with acute myocardial infarction and chronic heart failure, achieving the consistent regeneration of cardiac myocytes would still of great interest. We tested the hypothesis that the treatment of EPC with chromatin modifying agents Trichostatin A (inhibitor for histone deacetylase) and 5Aza-2-deoxycytidine (inhibitor for DNA methylation) influence histone acetylation and DNA methylation respectively thereby modify the chromatin structure and up-regulates embryonic stem gene expression. We report that 1) 5Aza and TSA treatment of EPC induces pluripotent genes Oct4, and Nanog and down regulates endothelial cell lineage specific genes. 2) Under specific culture conditions, treated EPCs showed effective trans-differentiation into ectoderm (neuronal), and mesoderm (cardiomyocyte) lineages. 3) The treated EPC showed increased AceH3K9 and decreased HDAC1 and LSD1 activity than the control cells. Taken together this biochemical and molecular data provide a novel and oocyte-independent approach for the generation of functional autologous stem like cells from adult progenitor cells without the introduction of retroviral mediated trans-genes or ES cell fusion for future use in regenerative medicine.

Public Health Relevance

Currently, the benefit of adult stem-cell therapy appears to be limited to vascular repair;myogenesis and/or myocardial regeneration seem to be unaffected. Although the potential for improved vascularization with EPC therapy will likely provide considerable clinical benefit to patients with acute myocardial infarction and chronic heart failure, techniques that can consistently regenerate cardiac myocytes are still of great interest. Thus, the development of autologous stem cells with enhanced lineage plasticity for subsequent testing in the setting of myocardial ischemia is an integral part of stem-cell research and it could be effectively used in cell therapy for regenerative medicine.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21HL097349-01
Application #
7707835
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Buxton, Denis B
Project Start
2009-09-01
Project End
2011-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
1
Fiscal Year
2009
Total Cost
$196,250
Indirect Cost
Name
University of Illinois at Chicago
Department
Pharmacology
Type
Schools of Medicine
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Cao, Thuy; Rajasingh, Sheeja; Samanta, Saheli et al. (2018) Biology and clinical relevance of noncoding sno/scaRNAs. Trends Cardiovasc Med 28:81-90
Samanta, Saheli; Zhou, Zhigang; Rajasingh, Sheeja et al. (2018) DNMT and HDAC inhibitors together abrogate endotoxemia mediated macrophage death by STAT3-JMJD3 signaling. Int J Biochem Cell Biol 102:117-127
Samanta, Saheli; Balasubramanian, Sathyamoorthy; Rajasingh, Sheeja et al. (2016) MicroRNA: A new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc Med 26:407-19
Rajasingh, Sheeja; Thangavel, Jayakumar; Czirok, Andras et al. (2015) Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility. PLoS One 10:e0134093
Rajasingh, Johnson (2015) The many facets of RNA-binding protein HuR. Trends Cardiovasc Med 25:684-6
Thangavel, Jayakumar; Samanta, Saheli; Rajasingh, Sheeja et al. (2015) Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. J Cell Sci 128:3094-105
Thangavel, Jayakumar; Malik, Asrar B; Elias, Harold K et al. (2014) Combinatorial therapy with acetylation and methylation modifiers attenuates lung vascular hyperpermeability in endotoxemia-induced mouse inflammatory lung injury. Am J Pathol 184:2237-49
Rajasingh, Johnson; Thangavel, Jayakumar; Siddiqui, Mohammad R et al. (2011) Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One 6:e22550