The goal of this application is to develop an F-18 labeled PET radiotracer to image the serotonin transporter (SERT) in discrete brain areas, especially areas with low density of SERT. The SERT, located on the cell bodies and terminals of the 5-HT neurons, is a marker of 5-HT innervation. Alterations in 5-HT transmission and SERT densities have been described in a number- of neuropsychiatric conditions, including major depression, anxiety disorders, schizophrenia, drug abuse, alcoholism, eating disorders, Alzheimer's and Parkinson's disease. The currently available PET radiotracer, [11C](+)-McN5652, suffers from many limitations, including high levels of nonspecific binding, poor in vivo signal to noise ratio, and slow brain kinetics. Due to these drawbacks, [11C](+)-McN5652 can only be used to image the brain regions with high SERT densities (midbrain, thalamus and striatum), but not those with lower SERT densities, such as hippocampus, amygdaIa and neocortex, where localized alterations in SERT densities have been identified in postmortem studies. In this application we propose to develop a new ligand, 2-[2-(dimethylaminomethyl) phenylsulfanyl)]-5-fluoromethylphenylamine, or AFM, into a PET ligand. AFN is a potent and selective SERT ligand that can be radiolabeled with either C-11 or F-18. Preliminary results indicate that [11C]AFM possesses high affinity and excellent binding specificity in vivo. Imaging studies in baboons demonstrates that [11CIAFM is a PET tracer with superior imaging properties, including faster kinetics and a higher signal-to-noise ratio compared to [11C](+)-McN5652. These characteristics make it possible to image brain regions with low SERT densities. We propose to develop [ 11C]AFM and [18F]AFM for clinical imaging applications. Experiments are designed to: 1) characterize fully the in vivo pharmacology and pharmacokinetics of [11C]AFM and [18F]AFM; 2) assess the potential and suitability of [11C]AFM and [18F]AFM to image the SERT in brain regions of both high and low SERT densities; and 3) characterize the imaging properties of [11C]AFM and [18F]AFM in healthy human subjects. The ultimate goal is to introduce [11C]AFM and [18F]AFM into the clinics to probe the role of SERT in neuropsychiatric disorders. Introduction of [18F]AFM would constitute the first PET tracer for the SERT that can be prepared in a central facility and distributed to various sites for clinical imaging purposes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21MH066624-03
Application #
6798159
Study Section
Special Emphasis Panel (ZRG1-SRB (06))
Program Officer
Brady, Linda S
Project Start
2002-09-19
Project End
2005-10-15
Budget Start
2004-09-01
Budget End
2005-10-15
Support Year
3
Fiscal Year
2004
Total Cost
$206,205
Indirect Cost
Name
New York State Psychiatric Institute
Department
Type
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Naganawa, Mika; Nabulsi, Nabeel; Planeta, Beata et al. (2013) Tracer kinetic modeling of [(11)C]AFM, a new PET imaging agent for the serotonin transporter. J Cereb Blood Flow Metab 33:1886-96
Huang, Yiyun; Zheng, Ming-Qiang; Gerdes, John M (2010) Development of effective PET and SPECT imaging agents for the serotonin transporter: has a twenty-year journey reached its destination? Curr Top Med Chem 10:1499-526
Frankle, W Gordon; Slifstein, Mark; Gunn, Roger N et al. (2006) Estimation of serotonin transporter parameters with 11C-DASB in healthy humans: reproducibility and comparison of methods. J Nucl Med 47:815-26
Huang, Yiyun; Zhu, Zhihong; Xiao, Yingxian et al. (2005) Epibatidine analogues as selective ligands for the alpha(x)beta2-containing subtypes of nicotinic acetylcholine receptors. Bioorg Med Chem Lett 15:4385-8
Huang, Yiyun; Bae, Sung-A; Zhu, Zhihong et al. (2005) Fluorinated diaryl sulfides as serotonin transporter ligands: synthesis, structure-activity relationship study, and in vivo evaluation of fluorine-18-labeled compounds as PET imaging agents. J Med Chem 48:2559-70
Frankle, W Gordon; Huang, Yiyun; Hwang, Dah-Ren et al. (2004) Comparative evaluation of serotonin transporter radioligands 11C-DASB and 11C-McN 5652 in healthy humans. J Nucl Med 45:682-94
Huang, Yiyun; Hwang, Dah-Ren; Bae, Sung-A et al. (2004) A new positron emission tomography imaging agent for the serotonin transporter: synthesis, pharmacological characterization, and kinetic analysis of [11C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine ([11C]AFM). Nucl Med Biol 31:543-56
Huang, Yiyun; Narendran, Raj; Bae, Sung-A et al. (2004) A PET imaging agent with fast kinetics: synthesis and in vivo evaluation of the serotonin transporter ligand [11C]2-[2-dimethylaminomethylphenylthio)]-5-fluorophenylamine ([11C]AFA). Nucl Med Biol 31:727-38
Zhu, Zhihong; Guo, Ningning; Narendran, Raj et al. (2004) The new PET imaging agent [11C]AFE is a selective serotonin transporter ligand with fast brain uptake kinetics. Nucl Med Biol 31:983-94