The ability to successfully regulate emotions is among the most critical of human capacities. Basic research in affective neuroscience has begun to elucidate the cognitive processes which support this vital ability, attesting in particula to the efficacy of two major forms of emotion regulation, attentional deployment (AD) and cognitive reappraisal (CR). AD and CR are thought to operate through distinct cognitive mechanisms, differing both in (1) when they impact the temporal trajectory of emotion generation, and (2) which neural systems they engage. Critically, recent behavioral research has shown that AD and CR are differentially affected by the intensity of the emotion to be regulated, with CR - but not AD - becoming less effective under high levels of emotional load. The mechanisms underlying this differential impact of emotional load on AD and CR remain unclear. The broad, long-term objective of this proposal is to use a neurobiologically informed framework to account for the differential effect of emotional load on AD and CR by elucidating key differences in their temporal dynamics and patterns of neural engagement. More specifically, we propose to use electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to examine AD and CR under differing levels of emotional load. We hypothesize that (1a) AD will attenuate an electrocortical index of emotional stimulus processing (the late positive potential;LPP) at an early phase, but that CR will do so at a later phase, and importantly, (1b) the early attenuation of the LPP by AD will remain consistent across varying levels of emotional load, but the late attenuation by CR will weaken under high levels of emotional load. Second, we hypothesize that (2a) AD will recruit prefrontal and parietal regions involved in attentional control, whereas CR will recruit lateral and medial prefrontal brain region which have been associated with cognitive control and with affective meaning processing, and crucially, (2b) the modulation of amygdala activity via attentional brain regions in AD will be consistent across varying levels of emotional load, but the modulation of amygdala activity via affective-meaning processing regions in CR will vary as a function of emotional load (with no modulation under high emotional load). Our proposed research will help us to understand why certain regulation strategies seem to break down and become ineffective under high levels of emotional load, and may suggest new interventions for high-risk individuals based on the notion that, in order to optimize their overall utility, regulation strategies may need to be flexibly deployed according to the unique emotional demands of the situation.

Public Health Relevance

This proposal seeks to clarify the temporal dynamics and neural bases of two widely used forms of emotion regulation (attentional deployment, AD, and cognitive reappraisal, CR) under varying levels of emotional load. Drawing upon a neurobiologically-informed framework which sees AD and CR as operating via overlapping but separable mechanisms, this research will: a) delineate the mechanisms by which certain regulatory strategies - but not others - become ineffective under high levels of emotional load, and b) help provide an understanding of the temporal dynamics and patterns of neural engagement underlying emotion regulatory impairments in the highly intense emotional states that characterize many clinical disorders. Given that major therapeutic interventions focus on improving attentional and evaluative processes that constitute AD and CR, respectively, the proposed research will facilitate the development of novel clinical interventions - and key refinements in extant ones - informed by the idea that optimal emotion regulation depends upon flexibly applying distinct regulation strategies according to the unique emotional demands of the situation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21MH094545-01A1
Application #
8302743
Study Section
Adult Psychopathology and Disorders of Aging Study Section (APDA)
Program Officer
Simmons, Janine M
Project Start
2012-05-01
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
1
Fiscal Year
2012
Total Cost
$235,500
Indirect Cost
$85,500
Name
Stanford University
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305