Accumulating evidence from the animal literature, healthy populations, and schizophrenia studies suggests that regular exercise positively affects integral functions such as neurogenesis, synaptic plasticity and cognition. Likewise, preliminary evidence suggests that aerobic activity has been associated with improved quality of life and a lower level of symptoms in patients with schizophrenia. Because exercise has been found to stimulate human medial temporal neurogenesis, and related abnormalities have been widely observed in studies of schizophrenia, physical activity may be in an important intervention. During the psychosis prodrome, a period immediately preceding formal onset of psychotic disorders, adolescents experience subtle attenuated symptoms coupled with cognitive deterioration and a global decline in socio-occupational functioning and anywhere between 10-35% go on to transition to a psychotic disorder such as schizophrenia in a two-year period. Despite the promise of exercise interventions, and the critical role medial temporal lobe abnormalities play in etiological models of psychosis, there have been no experimental studies of aerobic exercise in ultra-high risk youth (UHR). Understanding the potential benefits of aerobic exercise in UHR youth is integral as the prodrome is a viable period of intervention in which considerable brain development is still occurring. Further, as there have been challenges associated with many of the available interventions, and an increasing level of potential found in neuroplasticity-based interventions, understanding the effect of exercise on respective brain-behavior holds considerable promise. Experimental research is sorely needed to determine if prescribed aerobic exercise can stimulate medial-temporal neurogenesis and ameliorate cognition and symptoms/functioning in this vital group. In the proposed study, an expert team of experienced prodromal and exercise investigators will follow a group of 15 UHR adolescent and young adults (ages 16-24) through a 12 week exercise trial to determine which level of exercise intensity/frequency is tolerable for participants and optimal for improving aerobic fitness (65% of VO2max and 2 sessions per week versus 85% intensity and 3 sessions per peek) and if improvements in aerobic fitness (i.e., VO2max, VO2peak, ventilatory threshold) are associated with increases in medial temporal structure volume (hippocampus and parahippocampal gyrus) and accompanying improvements in cognitive function (i.e., including tasks known to recruit heavily on medial temporal structures) as well as symptomatology and social/role functioning. If the benchmarks are met, this data will be used to streamline a three-year rater-blind controlled trial (15 UHR-exercise, 15 UHR waitlisted-control) to determine the efficacy of the intervention in promoting medial temporal health as well as accompanying cognitive, clinical, and socio-occupational function improvement. Participants will be followed up to 24-months to determine if the intervention has an affect on clinical course and transition to psychosis. Taken together, this study is important for understanding the lessons necessary for planning a future large-scale trial, and has the potential to shed light on a promising new treatment for UHR youth.

Public Health Relevance

The goal of this application is to test the feasibility and effectiveness of cardiovascular exercise in promoting brain health and improving related symptoms (e.g., hearing sounds that are not there, feeling emotionally detached from self and others), cognitive difficulties (troubles with memory and learning), and every day social-occupational functioning in youth at imminent risk for developing a psychotic disorder such as schizophrenia. Understanding how exercise may protect or improve the health of a brain area that is implicated as a major contributing factor to the onset of psychosis may lead to a path-breaking new intervention that does not suffer from many of the side effects, costs, and other barriers that characterize treatments that are currently available for this group. Because a significant portion of high-risk youth go on to develop a psychotic disorder in a short period, intervening at this stage may help to improve the clinical course and ultimately prevent the onset of a devastating and prevalent mental illness.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21MH103231-02
Application #
8876803
Study Section
Special Emphasis Panel (ZMH1)
Program Officer
Wagner, Ann
Project Start
2014-07-01
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Colorado at Boulder
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80303
Dean, Derek J; Samson, Alayna T; Newberry, Raeana et al. (2018) Motion energy analysis reveals altered body movement in youth at risk for psychosis. Schizophr Res 200:35-41
Gupta, Tina; DeVylder, Jordan E; Auerbach, Randy P et al. (2018) Speech illusions and working memory performance in non-clinical psychosis. Schizophr Res 195:391-395
Vargas, Teresa; Snyder, Hannah; Banich, Marie et al. (2018) Altered selection during language processing in individuals at high risk for psychosis. Schizophr Res 202:303-309
Dean, Derek J; Walther, Sebastian; Bernard, Jessica A et al. (2018) Motor clusters reveal differences in risk for psychosis, cognitive functioning, and thalamocortical connectivity: evidence for vulnerability subtypes. Clin Psychol Sci 6:721-734
Cowan, Henry R; McAdams, Dan P; Mittal, Vijay A (2018) Core beliefs in healthy youth and youth at ultra high-risk for psychosis: Dimensionality and links to depression, anxiety, and attenuated psychotic symptoms. Dev Psychopathol :1-14
Lunsford-Avery, Jessica R; Kollins, Scott H; Mittal, Vijay A (2018) Eveningness diurnal preference associated with poorer socioemotional cognition and social functioning among healthy adolescents and young adults. Chronobiol Int :1-6
Clark, Sarah V; Mittal, Vijay A; Bernard, Jessica A et al. (2018) Stronger default mode network connectivity is associated with poorer clinical insight in youth at ultra high-risk for psychotic disorders. Schizophr Res 193:244-250
Gupta, Tina; Hespos, Susan J; Horton, William S et al. (2018) Automated analysis of written narratives reveals abnormalities in referential cohesion in youth at ultra high risk for psychosis. Schizophr Res 192:82-88
Newberry, Raeana E; Dean, Derek J; Sayyah, Madison D et al. (2018) What prevents youth at clinical high risk for psychosis from engaging in physical activity? An examination of the barriers to physical activity. Schizophr Res 201:400-405
Bernard, Jessica A; Orr, Joseph M; Mittal, Vijay A (2017) Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. Neuroimage Clin 14:622-628

Showing the most recent 10 out of 35 publications