The purpose of this grant is to generate a novel series of agents for genetic manipulation of receptors, ion channel, and signaling molecules in vivo. These agents (tethered toxins) are chimeric molecules derived from tethering of naturally occurring peptide neurotoxins to the cell surface via GPI anchors or transmembrane. These studies derive from the discovery of mammalian prototoxin genes (e.g. Lynx 1) which are the evolutionary antecedents of snake venom toxins, and which can function as modulators of nAChRs in their native GPI-anchored form. Preliminary results are that tethered bungarotoxins retain their activity on nAChRs, and that they are not cleaved from the cell surface to inhibit adjacent cells. The existence of many thousands of naturally occurring peptide neurotoxins (e.g. bungarotoxins, conotoxins, conantokins, etc.), their exquisite target specificities, and the ability to target expression of the agents in vivo using BAC transgenic mice, suggests that the development of a generic strategy for harnessing their potency for in vivo use will permit genetic control over a wide variety of neuronal functions. For example, cell specific genetic control of neural activity, neurotransmitter receptor function (e.g. ACh, NMDA, 5-HT3 receptors), and specific GPCR signal transduction cascades would become possible.
The specific aims are to: 1) Construct additional tethered toxins, particularly tethered conotoxins, and test their activity in Xenopus oocytes; 2) Produce BAC transgenic mice expressing tethered toxins in specific CNS cell types in vivo. Assess the efficacy of tethered toxin action by evaluating phenotypes that would be expected based on results obtained in Specific Aim 1 and current knowledge of the roles of the targeted receptors and ion channels in vivo; 3) Develop inducible tethered toxins to improve the temporal resolution of this strategy for genetic manipulation of specific cells and signaling pathways. These studies will allow unprecedented precision in the genetic dissection of functions required for CNS development, function and dysfunction in vivo.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21NS047751-03
Application #
7009229
Study Section
Special Emphasis Panel (ZRG1-MDCN-1 (57))
Program Officer
Mamounas, Laura
Project Start
2004-02-01
Project End
2008-01-31
Budget Start
2006-02-01
Budget End
2008-01-31
Support Year
3
Fiscal Year
2006
Total Cost
$152,651
Indirect Cost
Name
Rockefeller University
Department
Biochemistry
Type
Other Domestic Higher Education
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Miwa, Julie M; Stevens, Tanya R; King, Sarah L et al. (2006) The prototoxin lynx1 acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo. Neuron 51:587-600