The goal of this research is to elucidate the physiological and molecular responses that occur in response to persistent mitochondrial DNA (mtDNA) damage. Mitochondrial DNA integrity is critical for human health, and mtDNA is more sensitive than nuclear DNA (nDNA) to many chemicals that cause DNA damage. However, the consequences of unrepaired mtDNA damage are poorly understood. Furthermore, since mitochondria apparently lack the repair proteins that would handle such damage in the nuclear genome, the fate of mtDNA damaged by environmental genotoxins, such as ultraviolet C radiation (UVC) and polycyclic aromatic hydrocarbons, is also poorly understood. This project will elucidate the fate of mtDNA damage and test the hypothesis that severely damaged mtDNA is cleared from the powerful model organism Caenorhabditis elegans by fission/fusion and autophagy. We have recently observed that early life stage exposure to bulky (UVC-induced) mtDNA lesions causes developmental delay in C elegans, and also leads to neurodegeneration in adults, suggesting that C elegans will be an appropriate as well as powerful model for the mammalian response to such damage. To better understand the temporal progression and mechanistic details of the toxicological response to such damage, we will also examine the molecular and physiological consequences of early-life exposure to persistent mtDNA damage. This work will be accomplished via the following three Specific Aims:
Specific Aim 1. Test the hypothesis that exposure during early development to persistent mtDNA damage leads to mitochondrial dysfunction. We will measure mitochondrial function and dysfunction in C elegans carrying persistent mtDNA damage.
Specific Aim 2. Test the hypothesis that exposure during early development to persistent mtDNA damage leads to neurodegeneration in adults. Many neurodegenerative diseases have environmental components, and exposure to mitochondrial toxicants is associated with neurodegenerative disease. We will test whether early-life exposure of C elegans to persistent mtDNA damage leads to neurodegeneration in later life.
Specific Aim 3. Test the hypothesis that bulky DNA adducts present in mitochondrial genomes are removed via mitochondrial fusion, fission and autophagy. This hypothesis will be tested via the use of gene knock-out and gene knock-down technologies.

Public Health Relevance

Mitochondrial DNA integrity is critical for human health, but the mechanisms by which persistent mtDNA damage causes physiological outcomes, and the pathways by which such damage is handled, are unclear. This research will yield information critical to our understanding of the genetic and environmental contributors to diseases caused by mitochondrial dysfunction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21NS065468-02
Application #
7828197
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Gwinn, Katrina
Project Start
2009-05-15
Project End
2011-06-30
Budget Start
2010-05-01
Budget End
2011-06-30
Support Year
2
Fiscal Year
2010
Total Cost
$195,000
Indirect Cost
Name
Duke University
Department
Type
Schools of Earth Sciences/Natur
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
González-Hunt, Claudia P; Leung, Maxwell C K; Bodhicharla, Rakesh K et al. (2014) Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans. PLoS One 9:e114459
Leung, Maxwell C K; Rooney, John P; Ryde, Ian T et al. (2013) Effects of early life exposure to ultraviolet C radiation on mitochondrial DNA content, transcription, ATP production, and oxygen consumption in developing Caenorhabditis elegans. BMC Pharmacol Toxicol 14:9
Bess, Amanda S; Crocker, Tracey L; Ryde, Ian T et al. (2012) Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans. Nucleic Acids Res 40:7916-31
Kasiviswanathan, Rajesh; Gustafson, Margaret A; Copeland, William C et al. (2012) Human mitochondrial DNA polymerase ? exhibits potential for bypass and mutagenesis at UV-induced cyclobutane thymine dimers. J Biol Chem 287:9222-9
Hunter, Senyene E; Jung, Dawoon; Di Giulio, Richard T et al. (2010) The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 51:444-51
Leung, Maxwell C K; Goldstone, Jared V; Boyd, Windy A et al. (2010) Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo. Toxicol Sci 118:444-53