Transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS) are examples of electrical stimulation therapies that are rapidly gaining attention as means of modulating motor function, semantic processing, and executive function. Both therapies have attracted many clinical and experimental studies. tDCS has been found to have both facilitatory and inhibitory effects on the brain depending on stimulation polarity and electrode position. DBS has been thoroughly evaluated clinically for treatment of movement disorders, principally Parkinson's disease, and is extending its reach to include treatment of disorders such as focal dystonia, depression and chronic pain. While still mostly in the experimental stage, tDCS applications and acceptance are growing extremely rapidly. Although the functional alterations associated with tDCS can be categorized without knowledge of the underlying neurophysiology, an understanding of where externally applied current actually flows in any electrical stimulation technique is crucial as a basis for understanding which brain regions, circuits, or elements are affected by these therapies, and how these changes may occur. Such knowledge will lead to a better understanding of the mechanisms underlying these therapies, and thus to more focused and effective stimulation patterns and locations. Ultimately, this will lead to more efficient and novel clinical applications. Many studies have simulated the effects of current application in both extra- and intracranial modalities using computer simulation. Simulations will always be limited by errors in interpreting MRI data during segmentation, differences between assumed and actual electrical conductivity values, and mismatches between actual and presumed electrode locations and sizes. Thus, better methods to understand and verify current flow distributions are badly needed. In this proposal we will use a recently developed MRI-based phase imaging technique to more directly measure current densities in vivo. Unlike earlier MR-based methods of measuring electrical current flow, our technique works without requiring subject repositioning. Our methods will be validated against high-resolution subject-specific models incorporating many tissue compartments, including anisotropic white matter. Thus, we will compare our new direct measurement method against state-of-the-art modeling approaches.

Public Health Relevance

Electrical stimulation therapies such as deep brain stimulation (DBS) and transcranial direct current stimulation (tDCS) are increasingly being used to affect motor function, cognitive processing, and executive function. Little is understood of the mechanisms or actual electrical current flows produced by these techniques. We propose a method that can measure actual current flows in vivo.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Special Emphasis Panel (NOIT)
Program Officer
Babcock, Debra J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Arizona State University-Tempe Campus
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta et al. (2018) Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions. Magn Reson Med 79:71-82
Kuhn, Taylor; Gullett, Joseph M; Boutzoukas, Angelique E et al. (2018) Temporal lobe epilepsy affects spatial organization of entorhinal cortex connectivity. Epilepsy Behav 88:87-95
Chauhan, Munish; Indahlastari, Aprinda; Kasinadhuni, Aditya K et al. (2018) Low-Frequency Conductivity Tensor Imaging of the Human Head In Vivo Using DT-MREIT: First Study. IEEE Trans Med Imaging 37:966-976
Kasinadhuni, A K; Indahlastari, A; Chauhan, M et al. (2017) Imaging of current flow in the human head during transcranial electrical therapy. Brain Stimul 10:764-772
Indahlastari, Aprinda; Chauhan, Munish; Sadleir, Rosalind J (2016) Projected current density comparison in tDCS block and smooth FE modeling. Conf Proc IEEE Eng Med Biol Soc 2016:4079-4082
Indahlastari, Aprinda; Chauhan, Munish; Schwartz, Benjamin et al. (2016) Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions. J Neural Eng 13:066006
Indahlastari, Aprinda; Sadleir, Rosalind J (2015) A comparison between block and smooth modeling in finite element simulations of tDCS. Conf Proc IEEE Eng Med Biol Soc 2015:3403-6