Approximately 65 million people worldwide have epilepsy. Over one-third of these individuals do not respond to current medical therapy; consequently, novel therapeutic agents are needed. Although certain brain injuries such as traumatic brain injury, stroke and prolonged status epileptics (SE) are known to predispose to epilepsy, there are currently no effective interventions to reduce the risk of epilepsy after such injuries. We and others have established that activation of the Janus Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) signaling pathway occurs in the hippocampus following brain injuries that lead to epilepsy. Using a rat model of temporal lobe epilepsy (TLE), we have preliminary evidence that this activation may be a critical mediator of acquired epileptogenesis. We have observed that peripheral administration of WP1066- a JAK/STAT pathway inhibitor -at the time of SE reduces both STAT activation & spontaneous seizure frequency for 4 weeks. While it was a useful molecule for displaying proof-of-concept, WP1066 is limited by highly unfavorable chemical & pharmacokinetic (PK) properties. Our initial structure- activity relationship studies have identified one novel analog of WP1066 that has increased stability, and we have preliminary evidence that this analog, as well as two known small molecular weight JAK/STAT inhibitors that are in clinical trial or FDA approved, result in higher brain concentrations and inhibit STAT3 activation after SE more effectively than WP1066. We propose to examine these novel JAK/STAT inhibitors to determine 1) their potency to inhibit JAK/STAT pathway activation and cellular toxicity in primary hippocampal neurons, 2) brain concentrations as a function of dose and time, ability to block acute seizure- induced JAK/STAT pathway activation in brain and specificity/off-target effects on other kinases, and 3) the effects of these novel JAK/STAT inhibitors on epilepsy development and cognitive co-morbidities in a rat TLE model. The expected outcome is identification of lead JAK/STAT inhibitors that can be advanced towards clinical testing for epilepsy disease modification.

Public Health Relevance

The proposed studies will examine if new compounds developed to reduce activation of a critical cell signaling pathway (JAK/STAT inhibitors) can prevent or inhibit the development of epilepsy following a brain insult in an animal model. The outcome of these studies could lead to new therapies that can be used to prevent or inhibit development of acquired epilepsy following brain injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21NS083057-02
Application #
8776980
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Whittemore, Vicky R
Project Start
2014-01-01
Project End
2016-12-31
Budget Start
2015-01-01
Budget End
2016-12-31
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Pediatrics
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Ruan, Qiu T; Yazdani, Neema; Beierle, Jacob A et al. (2018) Changes in neuronal immunofluorescence in the C- versus N-terminal domains of hnRNP H following D1 dopamine receptor activation. Neurosci Lett 684:109-114
Raible, Daniel J; Frey, Lauren C; Del Angel, Yasmin Cruz et al. (2015) JAK/STAT pathway regulation of GABAA receptor expression after differing severities of experimental TBI. Exp Neurol 271:445-56
Grabenstatter, Heidi L; Cogswell, Meaghan; Cruz Del Angel, Yasmin et al. (2014) Effect of spontaneous seizures on GABAA receptor ?4 subunit expression in an animal model of temporal lobe epilepsy. Epilepsia 55:1826-33
Simonato, Michele; Brooks-Kayal, Amy R; Engel Jr, Jerome et al. (2014) The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol 13:949-60