Understanding the computations that take place in brain circuits requires identifying how neurons in those circuits are connected to each other. In recent years several new approaches (most notably, serial electron microscopy, replication-deficient rabies viruses, and GRASP) have been designed to identify the wiring diagrams of brain circuits. To overcome some of the limitations of the currently available strategies we propose to generate a new genetically-encoded system to trace brain circuits by transsynaptic control of transcription that will open new opportunities for investigating the relationship betwee circuit connectivity and function. The system that we propose is based on the molecular logic of the Notch receptor. In this system, neurons expressing an artificial ligand (""""""""sender"""""""" neurons) activate a genetically-modified Notch receptor on their synaptic partners (""""""""receiver"""""""" neurons). Upon ligand-receptor interaction in synaptic sites, the engineered receptor is cleaved in its transmembrane domain and releases a protein fragment that regulates transcription in the synaptic partners. Our initial experiments in vitro have confirmed the feasibility of this strategy and we propose to apply this design towards identifying wiring diagrams of neuronal circuits in transgenic animals, both in mice and drosophila.

Public Health Relevance

It is thought that many neurodevelopmental disorders, including autism and schizophrenia, may be due to incorrect wiring of neurons in the brain. The goal of this proposal is to generate a new method that will allow investigators to investigate the wiring diagram of neurons in the brain.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21NS084851-01
Application #
8603342
Study Section
Special Emphasis Panel (ZRG1-MDCN-T (05))
Program Officer
Riddle, Robert D
Project Start
2013-07-01
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$249,750
Indirect Cost
$99,750
Name
University of Massachusetts Medical School Worcester
Department
Biology
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655