Insulin resistance, hepatic inflammation, and NAFLD are interlocking pathophysiologic events, but the mechanisms of these abnormalities, and the ways in which these different processes interact, are poorly understood. This is a broad, collaborative application in which the four participating PI's and laboratories will concentrate their focus on the etiology and pathophysiology of hepatic inflammation, steatosis, and insulin resistance. The scale of this application is substantial and will focus on four overall specific aims. In the first aim, an ambitious, large scale time course will be undertaken in high fat diet (HFD)/obese mice, coupled with systematic in vitro and in vivo measurements to uncover the dynamic temporal time course and key transition points enabling the development of hepatic insulin resistance/inflammation/steatosis.
The second aim explores a novel hypotheses which proposes that changes in intestinal microflora and gut permeability to bacterial products triggers inflammatory signals directed to the liver. These inflammatory stimuli then interact with immune cells in the liver, generating the chronic hepatic inflammatory state.
The third aim encompasses several new ideas and hypotheses aimed at delineating the molecular mechanisms underlying the metabolic disturbances in the liver. These studies will involve tracking the itinerary of immune cells to the liver, identifying the phenotypic function of the different liver cell types, studies of biochemical pathways involved in insulin signaling, lipogenesis/fat oxidation, inflammation, and the identification of transcription factor cistromes and epigenetic changes in genomic loci induced by obesity. In vivo and in vitro studies in a number of knockout mice will be heavily used in the pursuit of these studies.
The final aim proposes translational studies in which liver biopsies will be obtained from obese NAFLD subjects before and after weight loss. Cellular, biochemical, and genomic studies will be performed in these biopsies and correlated with the in vivo clinical data on these patients. In this way, we will be able to test the ideas and concepts learned from the basic studies in the first three aims for relevance to human pathophysiology.
NAFLD is closely associated with hepatic insulin resistance and inflammation and is the most common liver disease in the US. The pathophysiologic mechanisms underlying the interactions between hepatic insulin resistance, inflammation, and steatosis are poorly understood, and this project should lead to a greatly improved basic understanding of this disorder with the potential to lead to new therapeutic opportunities.
Doktorova, Marcela; Zwarts, Irene; Zutphen, Tim van et al. (2017) Intestinal PPAR? protects against diet-induced obesity, insulin resistance and dyslipidemia. Sci Rep 7:846 |
De Magalhaes Filho, C Daniel; Downes, Michael; Evans, Ronald M (2017) Farnesoid X Receptor an Emerging Target to Combat Obesity. Dig Dis 35:185-190 |
Chung, Hyo Kyun; Ryu, Dongryeol; Kim, Koon Soon et al. (2017) Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol 216:149-165 |
Oral, Elif A; Reilly, Shannon M; Gomez, Andrew V et al. (2017) Inhibition of IKK? and TBK1 Improves Glucose Control in a Subset of Patients with Type 2 Diabetes. Cell Metab 26:157-170.e7 |
Saison-Ridinger, Maya; DelGiorno, Kathleen E; Zhang, Tejia et al. (2017) Reprogramming pancreatic stellate cells via p53 activation: A putative target for pancreatic cancer therapy. PLoS One 12:e0189051 |
Wu, Chyuan-Chuan; Baiga, Thomas J; Downes, Michael et al. (2017) Structural basis for specific ligation of the peroxisome proliferator-activated receptor ?. Proc Natl Acad Sci U S A 114:E2563-E2570 |
Sherman, Mara H; Yu, Ruth T; Tseng, Tiffany W et al. (2017) Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc Natl Acad Sci U S A 114:1129-1134 |
Fan, Weiwei; Waizenegger, Wanda; Lin, Chun Shi et al. (2017) PPAR? Promotes Running Endurance by Preserving Glucose. Cell Metab 25:1186-1193.e4 |
Fan, Weiwei; Evans, Ronald M (2017) Exercise Mimetics: Impact on Health and Performance. Cell Metab 25:242-247 |
Dickey, Audrey S; Sanchez, Dafne N; Arreola, Martin et al. (2017) PPAR? activation by bexarotene promotes neuroprotection by restoring bioenergetic and quality control homeostasis. Sci Transl Med 9: |
Showing the most recent 10 out of 72 publications