DNA helicases are required for virtually every aspect of DNA metabolism, including replication, repair, recombination and transcription. These enzymes are ubiquitous, having been identified in viruses, prokaryotes, and eukaryotes. Diseases such as xeroderma pigmentosum, Cockayne's syndrome, Bloom's syndrome, and Werner's syndrome, have been linked to defects in specific genes coding for DNA helicases. A comprehensive description of these essential biochemical processes requires detailed understanding of helicase mechanisms. For some helicases, enzymatic activity is dependent on the number of helicase molecules that are bound onto the DNA. This mechanism is referred to as the cooperative inchworm model n the case of Dda helicase or the functional cooperativity model in the case of NS3h helicase. Each individual helicase is thought to function via an inchworm mode of translocation, but multiple molecules bound to a single substrate exhibit greater activity. Cooperativity can result through structural or functional interactions. The goal of this R24 research proposal is to bring together investigators to develop methods that will allow direct visualization of helicase movement at the single molecule level in order to test the cooperative inchworm mechanism and lay the groundwork for studying multiprotein complexes on DNA. Helicases will be labeled with highly fluorescent nanocrystals, thereby enabling individual or groups of molecules to be observed directly. Direct visualization of single and multiple helicases during unwinding of double stranded DNA (specific aim 1) and translocation on single stranded DNA (specific aim 2) willl be measured. Three helicases that have unique properties will be examined. Tral is a highly processive helicase whereas Dda and NS3h are poorly processive helicases. Dda and NS3h are proposed to function cooperatively whereas Tral is proposed to function as a monomer. This research proposal is a direct response to the program announcement PA 03-127, """"""""INTEGRATIVE AND COLLABORATIVE APPROACHES TO RESEARCH"""""""" which is to facilitate collaboration between NIH-funded investigators who use different technologies to study a common problem. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Resource-Related Research Projects (R24)
Project #
1R24GM080599-01
Application #
7247451
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Portnoy, Matthew
Project Start
2007-04-01
Project End
2010-03-31
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
1
Fiscal Year
2007
Total Cost
$340,126
Indirect Cost
Name
University of Arkansas for Medical Sciences
Department
Biochemistry
Type
Schools of Medicine
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Liu, Juan; Choi, Meerim; Stanenas, Adam G et al. (2011) Novel, fluorescent, SSB protein chimeras with broad utility. Protein Sci 20:1005-20
Matlock, Dennis L; Yeruva, Laxmi; Byrd, Alicia K et al. (2010) Investigation of translocation, DNA unwinding, and protein displacement by NS3h, the helicase domain from the hepatitis C virus helicase. Biochemistry 49:2097-109
Tahmaseb, Kambiz; Matson, Steven W (2010) Rapid purification of helicase proteins and in vitro analysis of helicase activity. Methods 51:322-8