The primary objective of this program is to provide short-term (10 weeks) training experience for sixteen talented students in the area of cardiovascular function and disease. This research education opportunity will be provided to students from disadvantaged backgrounds, racial and ethnic minorities, and others who are underrepresented in biomedical research. The long-range goal is to increase the number of such students in health professions in cardiovascular biology through interest generated by exposure to a broad spectrum of research activities in this area. The Program Faculty participating in the program have been selected on the basis of their active research programs in the areas of cardiovascular disease, cardiovascular development, cardiac stem cells and regenerative medicine, cell signaling, and proteomics. Several of the faculty also conduct clinical and outcomes oriented research on diseases that disproportionately affect African Americans, notably hypertension, diabetes, and obesity. Students in the program are intimately involved in the ongoing projects in one of the participating laboratories, and are exposed to many aspects of conducting basic science and epidemiologic research. Students also participate in a lecture series that covers cutting edge topics in biological research, with a focus on topics related to cardiovascular function and disease. In addition, the lecture series covers laboratory safety and responsible conduct of research. In this application, we propose a new initiative that will give these students an opportunity to participate in activities with a clinical/translational focus in cardiovascular disease. At the conclusion of the training period, the students prepare a brief written paper and give an oral presentation on their project. They are also encouraged to return in November to present their research at the university-wide annual research day. The program will be evaluated at the end of each year using a combination of qualitative and quantitative approaches including analysis of applicant pool data and recruitment methods, as well as exit interviews and surveys with the students, and feedback from the mentors. Additionally, students' career choices and progress will be tracked by yearly contact with each of the participants.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Education Projects (R25)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-O (F2))
Program Officer
Meadows, Tawanna
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical University of South Carolina
Schools of Medicine
United States
Zip Code
Lauriol, Jessica; Cabrera, Janel R; Roy, Ashbeel et al. (2016) Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines. J Clin Invest 126:2989-3005
Lockhart, Marie M; Boukens, Bastiaan J D; Phelps, Aimee L et al. (2014) Alk3 mediated Bmp signaling controls the contribution of epicardially derived cells to the tissues of the atrioventricular junction. Dev Biol 396:8-18
Briggs, Laura E; Phelps, Aimee L; Brown, Elizabeth et al. (2013) Expression of the BMP receptor Alk3 in the second heart field is essential for development of the dorsal mesenchymal protrusion and atrioventricular septation. Circ Res 112:1420-32
Al Gadban, Mohammed M; German, Jashalynn; Truman, Jean-Philip et al. (2012) Lack of nitric oxide synthases increases lipoprotein immune complex deposition in the aorta and elevates plasma sphingolipid levels in lupus. Cell Immunol 276:42-51
Trombetta-Esilva, Jessica; Bradshaw, Amy D (2012) The Function of SPARC as a Mediator of Fibrosis. Open Rheumatol J 6:146-55
Trombetta-Esilva, J; Yu, H; Arias, D N et al. (2011) LPS induces greater bone and PDL loss in SPARC-null mice. J Dent Res 90:477-82