Correlated data are common in health sciences research, such as cancer research, where clustered, hierarchical (multi-level) and spatial data are often observed. Correlated data arise in various study designs, such as longitudinal studies, interventional studies, clinical trials and disease mapping. this correlation may be due to a single outcome measured repeatedly over time, as in longitudinal studies; or may be due to multiple outcomes measured one or more times each, as in clinical trials involving multiple endpoints; or may be due to a hierarchical or nested membership relationship among units, as in interventional studies; or may be due to geographic proximity, as in the estimation of disease maps. The purpose of this proposal is to develop new mixed effects models for types of correlated data that are common in practice but cannot be analyzed using existing statistical models, such as correlated data requiring nonparametric regression, or involving measurement error, or consisting of mixed discrete and continuous outcomes. The applicants will develop three new classes of mixed effects models: (1) generalized additive mixed models, which allow for flexible functional dependence of an outcome variable on covariates using nonparametric regression, while accounting for correlation among observations; (2) generalized linear (additive) mixed measurement error models, which allow outcomes and covariates to be measured with error, while accounting for correlation among observations; (3) generalized linear (additive) mixed models for mixed discrete and continuous outcomes, which allow multiple outcomes (e.g., multiple endpoints in clinical trials) to have different forms. Maximum likelihood inference and Bayesian inference using Monte-Carlo simulation methods will be developed for the proposed models. Simulation studies will be conducted to evaluate their performance. Efficient numerical algorithms and user-friendly statistical software will be developed, with the goal of disseminating these new models and methods to health sciences researchers. In collaboration with biomedical investigators, the applicants will apply the proposed models and methods to several accessible data sets on cancer research and other fields of research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
First Independent Research Support & Transition (FIRST) Awards (R29)
Project #
5R29CA076404-02
Application #
2837782
Study Section
Special Emphasis Panel (ZRG7-STA (01))
Program Officer
Erickson, Burdette (BUD) W
Project Start
1997-12-15
Project End
2002-11-30
Budget Start
1998-12-01
Budget End
1999-11-30
Support Year
2
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Biostatistics & Other Math Sci
Type
Schools of Public Health
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Wang, Chaolong; Zhan, Xiaowei; Bragg-Gresham, Jennifer et al. (2014) Ancestry estimation and control of population stratification for sequence-based association studies. Nat Genet 46:409-15
VanderWeele, Tyler J; Asomaning, Kofi; Tchetgen Tchetgen, Eric J et al. (2012) Genetic variants on 15q25.1, smoking, and lung cancer: an assessment of mediation and interaction. Am J Epidemiol 175:1013-20
Huang, Yen-Tsung; Lin, Xihong; Liu, Yan et al. (2011) Cigarette smoking increases copy number alterations in nonsmall-cell lung cancer. Proc Natl Acad Sci U S A 108:16345-50
Lin, Xinyi; Cai, Tianxi; Wu, Michael C et al. (2011) Kernel machine SNP-set analysis for censored survival outcomes in genome-wide association studies. Genet Epidemiol 35:620-31
Long, Qi; Little, Roderick J A; Lin, Xihong (2010) Estimating Causal Effects in Trials Involving Multi-Treatment Arms Subject to Non-compliance: A Bayesian framework. J R Stat Soc Ser C Appl Stat 59:513-531
Wu, Michael C; Kraft, Peter; Epstein, Michael P et al. (2010) Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet 86:929-42
Yu, Zhangsheng; Lin, Xihong (2010) SEMIPARAMETRIC REGRESSION WITH TIME-DEPENDENT COEFFICIENTS FOR FAILURE TIME DATA ANALYSIS. Stat Sin 20:853-869
Wu, Michael C; Lin, Xihong (2009) Prior biological knowledge-based approaches for the analysis of genome-wide expression profiles using gene sets and pathways. Stat Methods Med Res 18:577-93
Pan, Wenqin; Zeng, Donglin; Lin, Xihong (2009) Estimation in semiparametric transition measurement error models for longitudinal data. Biometrics 65:728-36
Li, Yi; Tang, Haicheng; Lin, Xihong (2009) Spatial Linear Mixed Models with Covariate Measurement Errors. Stat Sin 19:1077-1093

Showing the most recent 10 out of 17 publications