In humans with NIDDM the inability of insulin to suppress hepatic gluconeogenesis is a major defect. However, a single bout of endurance exercise improves this defect significantly in NIDDM subjects. The mechanisms for chronic elevation of gluconeogenesis in animal models of NIDDM are unknown, but may involve a defect in the insulin receptor and an unknown postreceptor defect at the level of gene expression. The applicant will test the hypothesis that hormonal regulation of liver gene expression is dramatically altered during exercise, reflecting metabolic processes that subsequently enhance the ability of insulin to suppress gluconeogenesis at the level of gene transcription. This research will use the hepatic PEPCK gene promotor as a model to link the mechanism by which exercise and NIDDM act at the insulin receptor level to a signal transduction event on the promoter.
In specific aim 1, a novel stable isotope technique will be used to establish the impact of prior exercise on hepatic gluconeogenesis and insulin resistance in the genetically obese db/db mouse.
In aim 2, the investigators will analyze the effects of prior exercise on insulin receptor binding, tyrosine kinase activity, and the ability of insulin to stimulate IRS-1 phosphorylation in liver.
In aim 3, transgenic mice with mutations in the glucocorticoid receptor binding site, insulin regulatory element and cAMP regulatory site of the PEPCK promoter will be used to determine whether exercise modifies the insulin signal through a specific target sequence on the promoter.
Specific aim 4 will be to cross-breed genetically obese db/db mice with the transgenic mice carrying a series of mutations in the PEPCK promoter to determine the role of hormone signaling elements and their potential transcription factors in inducing PEPCK gene expression and gluconeogenesis during the onset of type II diabetes. The outcome of these studies will provide new insights linking the mechanism by which exercise and NIDDM act at the receptor level to signal transduction event on the promoter, and should aid in understanding the role of exercise in altering insulin signaling to control gluconeogenesis in type II diabetes.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
First Independent Research Support & Transition (FIRST) Awards (R29)
Project #
Application #
Study Section
Respiratory and Applied Physiology Study Section (RAP)
Program Officer
Laughlin, Maren R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Schools of Medicine
United States
Zip Code
Catalano, Patrick M; Nizielski, Steven E; Shao, Jianhua et al. (2002) Downregulated IRS-1 and PPARgamma in obese women with gestational diabetes: relationship to FFA during pregnancy. Am J Physiol Endocrinol Metab 282:E522-33
Croniger, C M; Millward, C; Yang, J et al. (2001) Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta have an attenuated response to cAMP and impaired carbohydrate metabolism. J Biol Chem 276:629-38
Yamashita, H; Shao, J; Ishizuka, T et al. (2001) Leptin administration prevents spontaneous gestational diabetes in heterozygous Lepr(db/+) mice: effects on placental leptin and fetal growth. Endocrinology 142:2888-97
Shao, J; Yamashita, H; Qiao, L et al. (2000) Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice. J Endocrinol 167:107-15
Wang, L; Shao, J; Muhlenkamp, P et al. (2000) Increased insulin receptor substrate-1 and enhanced skeletal muscle insulin sensitivity in mice lacking CCAAT/enhancer-binding protein beta. J Biol Chem 275:14173-81
Liu, S; Croniger, C; Arizmendi, C et al. (1999) Hypoglycemia and impaired hepatic glucose production in mice with a deletion of the C/EBPbeta gene. J Clin Invest 103:207-13
Arizmendi, C; Liu, S; Croniger, C et al. (1999) The transcription factor CCAAT/enhancer-binding protein beta regulates gluconeogenesis and phosphoenolpyruvate carboxykinase (GTP) gene transcription during diabetes. J Biol Chem 274:13033-40
Ishizuka, T; Ernsberger, P; Liu, S et al. (1998) Phenotypic consequences of a nonsense mutation in the leptin receptor gene (fak) in obese spontaneously hypertensive Koletsky rats (SHROB). J Nutr 128:2299-306
Friedman, J E; Ishizuka, T; Liu, S et al. (1997) Reduced insulin receptor signaling in the obese spontaneously hypertensive Koletsky rat. Am J Physiol 273:E1014-23
Friedman, J E; Sun, Y; Ishizuka, T et al. (1997) Phosphoenolpyruvate carboxykinase (GTP) gene transcription and hyperglycemia are regulated by glucocorticoids in genetically obese db/db transgenic mice. J Biol Chem 272:31475-81

Showing the most recent 10 out of 11 publications