Meiosis is the fundamental process by which eukaryotic organisms produce gametes. The hallmarks of meiosis are homologous chromosome pairing, recombination and segregation. Defects in these processes lead to aneuploidy, which in humans results in birth defects and spontaneous abortions. A high correlation has been demonstrated between defects in meiosis and defects in the mitotic repair of ionizing radiation. The experiments proposed here will exploit this connection to study the genetic control of meiosis in Coprinus cinereus, a basidiomycete (mushroom) whose life cycle makes it an ideal model system for this work. The important features of meiosis in C. cinereus are that it is long and naturally highly synchronous. Each mushroom cap contain 107-108 meiotic cells; therefore sufficient material for biochemical analysis can be obtained at any stage of meiosis. Meiotic chromosomes can be studied using light and electron microscopy. In addition, both classical and molecular genetic techniques, including DNA-mediated cell transformation, are straightforward and well developed for this system. In previous work from this laboratory, radiation-sensitive mutants of C. cinereus were identified that have severe meiotic defects. These mutants, rad 3 and rad 9, will be analyzed further in the following experiments: 1. The effects of their mutations on DNA-mediated cell transformation will be determined. 2. The genes will be cloned and sequenced. The cloned genes will be used to study the expression of these genes during meiosis. It will also be determined whether the radiation sensitivity and meiotic dysfunction exhibited by rad 3 and rad 9 are pleiotropic effects of single gene mutations. In addition, null mutations of these genes will be created and analyzed. 3. The meiotic defects in these mutants will be further characterized by light microscopy. 4. Pseudorevertants of these mutants will be isolated, to identify other genes whose products function in meiosis and repair, and to reveal molecular interactions among these gene products.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
First Independent Research Support & Transition (FIRST) Awards (R29)
Project #
Application #
Study Section
Radiation Study Section (RAD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Indiana University Bloomington
Schools of Arts and Sciences
United States
Zip Code
Crown, K Nicole; Savytskyy, Oleksandr P; Malik, Shehre-Banoo et al. (2013) A mutation in the FHA domain of Coprinus cinereus Nbs1 Leads to Spo11-independent meiotic recombination and chromosome segregation. G3 (Bethesda) 3:1927-43
Anderson, Erika; Burns, Claire; Zolan, Miriam E (2012) Global gene expression in Coprinopsis cinerea meiotic mutants reflects checkpoint arrest. G3 (Bethesda) 2:1213-21
Eads, Brian D; Tsuchiya, Dai; Andrews, Justen et al. (2012) The spread of a transposon insertion in Rec8 is associated with obligate asexuality in Daphnia. Proc Natl Acad Sci U S A 109:858-63
Stajich, Jason E; Wilke, Sarah K; Ahren, Dag et al. (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107:11889-94
Burns, Claire; Stajich, Jason E; Rechtsteiner, Andreas et al. (2010) Analysis of the Basidiomycete Coprinopsis cinerea reveals conservation of the core meiotic expression program over half a billion years of evolution. PLoS Genet 6:e1001135
Many, Alexander M; Melki, Christina S; Savytskyy, Oleksandr P et al. (2009) Meiotic localization of Mre11 and Rad50 in wild type, spo11-1, and MRN complex mutants of Coprinus cinereus. Chromosoma 118:471-86
Zolan, Miriam E; Pukkila, Patricia J (2009) Meiotic cytogenetics in Coprinus cinereus. Methods Mol Biol 558:115-27