The broad and long term objective of the research described in this application is the elucidation of the structural, electronic, and chemical properties of metal-containing coordination sites of copper enzymes that reversibly bind and/or activate dioxygen or dioxygen analogs (nitric oxide). The methodology is that of the synthetic analog approach to the active sites of metallobiomolecules, whereby low molecular weight complexes are synthesized and examined at a small molecule level of detail. The properties revealed are thus intrinsic to the metal complex uncoupled from the influences of the protein matrix. The proposed research is ultimately directed towards the assembly and characterization of trinuclear copper clusters that mimic the structure and reactivity of the trinuclear copper clusters found in blue oxidases, which are responsible for reduction of dioxygen to water. The mechanism of activation is dramatically different from that of the dinuclear copper centers of tyrosinases or hemocyanins, though a structural similarity exists. A full understanding of the dioxygen reactivity of synthetic, trimeric copper complexes will help clarify some of the existing structural disparities between crystallography and spectroscopy. This analysis will require study of, not only the trinuclear centers, but also the related monomeric and dimeric copper complexes. Ligand design and synthesis is an integral part of this research; development of synthetic ligand systems which have the requisite flexibility to accommodate the different geometric preferences of Cu-II and Cu-I, while still maintaining a predisposed organization, is a necessary goal of this proposal.
The specific aims of the proposed research are as follows: (i) characterization of mu-eta2:eta2Cu2-O2-L2 copper complexes with simple monomeric ligands at low temperatures to define the minimum geometric and electronic constraints necessary for dioxygen binding and activation; (ii) stabilization of a synthetic, tetrahedral Cu-II species in a facial capping, trinitrogen ligand to provide well defined spectroscopic examples that can be used as spectroscopic benchmarks; (iii) characterization and stabilization of the reaction intermediates of nitric oxide and nitrite with tetrahedral Cu-II and Cu-I complexes with the intention of generating species relevant to the catalytic cycle of nitrite reductase; (iv) development of a modular synthetic approach to ligand assembly for the synthesis of trinuclear copper clusters designed to stabilize copper/dioxygen intermediates; (v) assembly of synthetic trinuclear copper clusters structurally similar to that observed in ascorbate oxidase with trinuclear ligands and characterization of their reactivity with dioxygen.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
First Independent Research Support & Transition (FIRST) Awards (R29)
Project #
5R29GM050730-04
Application #
2444842
Study Section
Metallobiochemistry Study Section (BMT)
Project Start
1994-07-01
Project End
1999-06-30
Budget Start
1997-07-01
Budget End
1998-06-30
Support Year
4
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Herres-Pawlis, Sonja; Haase, Roxana; Verma, Pratik et al. (2015) Formation of hybrid guanidine-stabilized bis(?-oxo)dicopper cores in solution: Electronic and steric perturbations. Eur J Inorg Chem 2015:5426-5436
Citek, Cooper; Lin, Bo-Lin; Phelps, Tim E et al. (2014) Primary amine stabilization of a dicopper(III) bis(?-oxo) species: modeling the ligation in pMMO. J Am Chem Soc 136:14405-8
Pellow, Matthew A; Stack, T Daniel P; Chidsey, Christopher E D (2013) Squish and CuAAC: additive-free covalent monolayers of discrete molecules in seconds. Langmuir 29:5383-7
Hoffmann, Alexander; Citek, Cooper; Binder, Stephan et al. (2013) Catalytic phenol hydroxylation with dioxygen: extension of the tyrosinase mechanism beyond the protein matrix. Angew Chem Int Ed Engl 52:5398-401
Citek, Cooper; Lyons, Christopher T; Wasinger, Erik C et al. (2012) Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation. Nat Chem 4:317-22
Pratt, Russell C; Lyons, Christopher T; Wasinger, Erik C et al. (2012) Electrochemical and spectroscopic effects of mixed substituents in bis(phenolate)-copper(II) galactose oxidase model complexes. J Am Chem Soc 134:7367-77
Verma, Pratik; Pratt, Russell C; Storr, Tim et al. (2011) Sulfanyl stabilization of copper-bonded phenoxyls in model complexes and galactose oxidase. Proc Natl Acad Sci U S A 108:18600-5
McCrory, Charles C L; Devadoss, Anando; Ottenwaelder, Xavier et al. (2011) Electrocatalytic O2 reduction by covalently immobilized mononuclear copper(I) complexes: evidence for a binuclear Cu2O2 intermediate. J Am Chem Soc 133:3696-9
Rosenfeld, Daniel E; Gengeliczki, Zsolt; Smith, Brian J et al. (2011) Structural dynamics of a catalytic monolayer probed by ultrafast 2D IR vibrational echoes. Science 334:634-9
Kang, Peng; Bobyr, Elena; Dustman, John et al. (2010) Bis(?-oxo) dicopper(III) species of the simplest peralkylated diamine: enhanced reactivity toward exogenous substrates. Inorg Chem 49:11030-8

Showing the most recent 10 out of 16 publications