The activation of 5-HT1A receptors modulates autonomic and central functions such as mood and anxiety. A better understanding of serotonergic neurons is critical to the development of improved pharmacological intervention in mental illness. 5-HT1A receptors are found on the Bell bodies of serotonergic dorsa l raphe (DR) neurons where their function is not understood. Biochemical studies have shown that the coupling of this receptor can be altered by stimulation of the cellular enzyme protein kinase C (PKC), but with a few exceptions studies have not investigated the effect of PKC activation on 5-HT1A coupling to ion channels. In DR neurons there are two consequences of receptor activation (l) opening of an inwardly rectifying K+ channel and (2) inhibition of voltage dependent Ca2+ influx. In DR neurons we have found that a certain level of stimulation of PKC uncouples the effect of 5-HT from Ca2+ current inhibition but unexpectedly it had no effect on the coupling of 5-HT to the activation of K+ channels. 5-HT-induced inhibition of Ca2+ influx in nerve cell bodies and terminals during an action potential may decrease the size of Ca2+-activated K+ conductances. The 5-HT-induced opening of inwardly rectifying K+ channels would elicit a neuronal hyperpolarization. If our hypothesis is correct only the actions of 5-HT on Ca2+-dependent potentials would be decreased by activation of PKC. Our preliminary data suggests that PKC activation has a negative feedback effect on one branch of the 5-HT1A receptor transduction fork namely inhibition of Ca2+ influx. Assuming that 5-HT does not directly activate PKC in DR neurons, prolonged depolarization or activation of metabotropic receptors which both increase intracellular Ca2+ should physiologically activate PKC. This suggests the possibility that a signalling pathway may be altered in an activity dependent manner. The functional weight of one pathway could be increased, possibly at the expense of another, and this may represent a short term form of synaptic plasticity. The overall aims of this proposal are threefold: (1) to determine whether the activation of protein kinase in isolated DR neurons alters the modulation of both arms of the 5-HT1A receptor transduction pathway equally; or whether there is a selective action on the coupling of this receptor only to Ca2+ channels. (2) To explore the mechanism of this effect using the patch clamp technique. (3) To investigate whether these observations can be observed in a more physiological setting, by examining the effect of 5-HT and phorbol esters on the Ca2+ activated K+ conductance of DR neurons in the slice preparation.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
First Independent Research Support & Transition (FIRST) Awards (R29)
Project #
Application #
Study Section
Neuropharmacology and Neurochemistry Review Committee (NPNC)
Program Officer
Asanuma, Chiiko
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Suny Downstate Medical Center
Schools of Medicine
United States
Zip Code