Lamin A is a vertebrate-specific nuclear lamina component that has been implicated in a variety of cellular functions, including structural integrity of the nucleus, sensing mechanical stress, cell signaling, and chromatin organization. Point mutations in Lamin A cause a spectrum of human degenerative disorders collectively called laminopathies including muscular dystrophies, cardiomyopathies, and a multisystem disorder known as progeria. Despite intense study, the mechanisms by which Lamin A affects cellular processes and causes such striking and tissue-specific human disease phenotypes remain unclear. The central hypothesis of this project is that Lamin A functions in part as a transcription factor, specifically as a positive modulator of enhancer function. This is a new way of thinking about Lamin A function. This hypothesis is based on strong preliminary data, showing that Lamin A associates with gene promoters and enhancers in human fibroblasts and that gains and losses of Lamin A-enhancer interactions were accompanied respectively by up-regulation and down- regulation of nearby genes. The overall objective of this proposed research is to rigorously test the hypothesis that Lamin A acts as an transcriptional activator at gene regulatory regions in the mammalian genome.
The aim of the R21 phase is to identify the cell-cycle stages and cell types in which Lamin A associates with gene regulatory regions and to verify that Lamin A acts as transcription regulator. The R33 phase will probe the mechanism and function of Lamin A-enhancer associations. Specifically, this phase will focus on identifying proteins interacting with Lamin A at regulatory regions, identifying subnuclear localization of Lamin A important for the associations and function, and investigating the contribution of Lamin A-chromatin interactions to development of laminopathy-related cardiovascular disease. Altogether, the project aims to prove that Lamin A acts as a transcription activator in the mammalian genome. If proven, this entirely new mechanism of action will open new research avenues to understanding vertebrate-specific mechanisms of gene regulation and the function of Lamin A in normal physiological processes and disease. It would also provide insights to the evolution of Lamin A and the biochemical properties that allow it to act as both an intermediate filament and a factor used in gene regulation. The experiments proposed would test a hypothesis that offers a direct and logical mechanistic explanation for the molecular and physical phenotypes of laminopathies.

Public Health Relevance

Mutations in the Lamin A gene cause a spectrum of human disorders including muscular dystrophy, cardiomyopathy, and progeria. The etiology of Lamin A-related human disease remains unknown. Our project aims to understand the mechanisms by which Lamin A functions in regulating human gene expression.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Exploratory/Developmental Grants Phase II (R33)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Program Officer
Guo, Max
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Chicago
Schools of Medicine
United States
Zip Code