Trauma and systemic infection elicit an acute inflammatory response. Inflammation involves complex interactions among leukocytes, their products (cytokines, free radicals, and proteases), and the tissue damage/dysfunction that ensues. This multiple organ dysfunction often manifests as septic shock and severe lung dysfunction, referred to collectively as the acute respiratory distress syndrome (ARDS), and contributes to the 215,000 annual deaths in the U.S. from sepsis. The complexity of this process has stymied the progress towards immunomodulatory ARDS therapeutics. We have developed a mathematical model of these elements in order to unravel this complex interplay in various settings of acute inflammation, and have calibrated distinct variants of this model with data from mice, rats, swine, and humans (University of Pittsburgh Inflammatory Analyte/Modeling Component). Our modeling platform has been used to gain both basic and translational insights, the latter including simulated (in silico) clinical trials. In conjunction with these efforts, we developed a sepsis + gut ischemia/reperfusion (Sepsis+I/R) porcine model that mimics the pathogenesis of human septic shock and ARDS (Upstate Medical University ARDS Animal Model Component). We hypothesize that mathematical analysis of the complex biochemical and physiologic data generated in our Sepsis+I/R model will enable us to isolate key therapeutic targets and to test novel therapeutics;one such agent is the modified tetracycline COL-3.
Our Specific Aims are: 1) to develop a robust mathematical model describing Sepsis+I/R- induced shock and ARDS in swine, its pathologic consequences, and possible therapies, 2) to utilize COL-3 as a tool to further calibrate the mathematical model and 3) to demonstrate that NE, MMP-2 and MMP-9 are critical components in Sepsis+I/R-induced septic shock and ARDS pathogenesis. Our calibrated mathematical model will be used to conduct in silico clinical trials and establish a platform for the rational development of novel ARDS therapeutics. The in silico trials will be validated in animal experiments. The proposed translational studies will develop a robust mathematical model capable of describing the complex pathogenesis of sepsis-induced ARDS and identify target molecules whose modulation would significantly improve clinical outcome. Sepsis and septic shock are responsible for more that 215,000 deaths in the United States per year with an annual healthcare cost of over $16 billion dollars. Due to the complexity of sepsis pathogenesis, it has been exceedingly difficult to develop drugs that will reduce this high mortality. In the proposed study, we will analyze the mechanisms of sepsis mortality with a sophisticated mechanistic, partially-calibrated mathematical model that will be able to identify molecular """"""""choke points"""""""" that if blocked will arrest the progression of this disease and significantly reduce sepsis-induced morbidity and mortality.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Exploratory/Developmental Grants Phase II (R33)
Project #
5R33HL089076-03
Application #
7907730
Study Section
Special Emphasis Panel (ZHL1-CSR-K (M1))
Program Officer
Harabin, Andrea L
Project Start
2008-09-01
Project End
2012-08-31
Budget Start
2010-09-01
Budget End
2012-08-31
Support Year
3
Fiscal Year
2010
Total Cost
$461,463
Indirect Cost
Name
Upstate Medical University
Department
Surgery
Type
Schools of Medicine
DUNS #
058889106
City
Syracuse
State
NY
Country
United States
Zip Code
13210
Emr, Bryanna; Sadowsky, David; Azhar, Nabil et al. (2014) Removal of inflammatory ascites is associated with dynamic modification of local and systemic inflammation along with prevention of acute lung injury: in vivo and in silico studies. Shock 41:317-23
Roy, Shreyas; Habashi, Nader; Sadowitz, Benjamin et al. (2013) Early airway pressure release ventilation prevents ARDS-a novel preventive approach to lung injury. Shock 39:28-38
Roy, Shreyas K; Kubiak, Brian D; Albert, Scott P et al. (2012) Chemically modified tetracycline 3 prevents acute respiratory distress syndrome in a porcine model of sepsis + ischemia/reperfusion-induced lung injury. Shock 37:424-32
Roy, Shreyas; Sadowitz, Benjamin; Andrews, Penny et al. (2012) Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome: a novel timing-based ventilatory intervention to avert lung injury. J Trauma Acute Care Surg 73:391-400
Roy, Shreyas K; Kendrick, Daniel; Sadowitz, Benjamin D et al. (2011) Jack of all trades: pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacol Res 64:580-9
Kubiak, Brian D; Albert, Scott P; Gatto, Louis A et al. (2011) A clinically applicable porcine model of septic and ischemia/reperfusion-induced shock and multiple organ injury. J Surg Res 166:e59-69
Kubiak, Brian D; Albert, Scott P; Gatto, Louis A et al. (2010) Peritoneal negative pressure therapy prevents multiple organ injury in a chronic porcine sepsis and ischemia/reperfusion model. Shock 34:525-34