Tuberculosis is responsible for 2 million deaths per year. The interplay between host and bacterial factors leads to different disease outcomes (latency, primary tuberculosis, reactivation tuberculosis). A key outcome is the formation of a collection of immune cells termed the granuloma. This structure acts not only as an immune microenvironment and a barrier to dissemination but also as a niche for long-term bacterial survival. The long- term goal of this project is to identify factors that contribute to different outcomes of M. tuberculosis infection. We hypothesize that these different infection outcomes are reflected locally at the level of the granuloma and that granuloma structure is the result of the interplay of events at organ, tissue, cellular, and molecular scales over the time course of minutes to years. Several models of granuloma formation in tuberculosis will be integrated: pulmonary granulomas induced by M. tuberculosis antigen (PPD) coated beads in vivo, M. tuberculosis infection in mice and non-human primates, and multi-scale in silico models. Our studies will include multiple spatial and temporal scales to address the following aims.
Aim 1 : Determine how specific immune cells and effector molecules in the lung influence the formation of different granuloma structures.
Aim 2 : Determine the role of dendritic cell and T cell trafficking between lung granuloma and draining lymph nodes in influencing granuloma development.
Aim 3 : Identify the mechanisms that determine TNF availability for the purpose of understanding how granulomas form as well as how treatment with anti-TNF-therapies leads to TB reactivation. Our interdisciplinary team's approach for integrating data and in silico models over the relevant biological and temporal scales will allow us to predict and test hypotheses regarding key factors that influence granuloma formation and structure. These factors are likely central to determining different disease outcomes following M. tuberculosis infection and will provide a new tool for testing therapies and vaccines against M. tuberculosis. Tuberculosis (TB) is a world health issue. The immune response to TB is unique, resulting in the formation of structures called granulomas in the lungs of infected people. We seek to understand the formation and function of these structures using integrated data generated from a variety of animal and computational models. (End of Abstract) ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Exploratory/Developmental Grants Phase II (R33)
Project #
1R33HL092883-01
Application #
7501618
Study Section
Special Emphasis Panel (ZHL1-CSR-K (M1))
Program Officer
Peavy, Hannah H
Project Start
2008-07-15
Project End
2011-05-31
Budget Start
2008-07-15
Budget End
2009-05-31
Support Year
1
Fiscal Year
2008
Total Cost
$224,160
Indirect Cost
Name
University of Pittsburgh
Department
Genetics
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Mattila, Joshua T; Ojo, Olabisi O; Kepka-Lenhart, Diane et al. (2013) Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 191:773-84
Myers, Amy J; Marino, Simeone; Kirschner, Denise E et al. (2013) Inoculation dose of Mycobacterium tuberculosis does not influence priming of T cell responses in lymph nodes. J Immunol 190:4707-16
Fallahi-Sichani, Mohammad; Flynn, JoAnne L; Linderman, Jennifer J et al. (2012) Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability. J Immunol 188:3169-78
Gideon, Hannah P; Flynn, JoAnne L (2011) Latent tuberculosis: what the host ""sees""? Immunol Res 50:202-12
Flynn, J L; Chan, J; Lin, P L (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4:271-8
Ford, Christopher B; Lin, Philana Ling; Chase, Michael R et al. (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43:482-6
Russell, David G; Barry 3rd, Clifton E; Flynn, JoAnne L (2010) Tuberculosis: what we don't know can, and does, hurt us. Science 328:852-6
Lin, Philana Ling; Flynn, Joanne L (2010) Understanding latent tuberculosis: a moving target. J Immunol 185:15-22
Kirschner, Denise E; Young, Douglas; Flynn, JoAnne L (2010) Tuberculosis: global approaches to a global disease. Curr Opin Biotechnol 21:524-31
Lin, Philana Ling; Myers, Amy; Smith, Le'Kneitah et al. (2010) Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62:340-50

Showing the most recent 10 out of 11 publications