Radiation therapy is utilized to treat over 50% of all patients with cancer. Although radiation therapy plays a critical role in curing some cancer patients and palliating others, a fundamental gap in improving the efficacy of radiation therapy exists because the mechanisms by which radiotherapy controls tumors and causes side effects remain poorly understood. Previously, we used Cre recombinase to generate mouse models to study mechanisms of acute and late effects of radiation. Here, we will apply these models to dissect the molecular mechanism regulating the alpha/beta ratio, which is frequently used in the clinic to select radiation doses and schedules for patients, but currently lacks a molecular rationale. Moreover, we have used Cre recombinase to develop genetically engineered mouse models of soft tissue sarcoma and lung cancer to study radiation biology. To study the complex interactions of tumor stroma and parenchymal cells during radiation therapy, we have recently generated novel strains of genetically engineered mice in which primary cancers can be generated with Flp recombinase. In this system, Cre recombinase can still be utilized to modify genes specifically in the tumor stroma. Utilizing Flp and Cre recombinases (i.e. dual recombinase technology) to study the tumor microenvironment's impact on radiation therapy is highly innovative because primary cancers can be initiated with one recombinase, while the other recombinase can be utilized to specifically modify stromal cells. In addition, we have recently generated novel genetically engineered mice in which Flp recombinase activates CreER expression. Therefore, with our novel system Flp initiates tumorigenesis and the tumor cells express CreER so that tamoxifen can modify genes specifically in tumor cells after the tumor has developed. We will use this system to study cell autonomous mechanisms that regulate tumor response to radiation therapy. Advancing the care of cancer patients with discoveries in radiation biology is ambitious, but with our track record of productivity and high impact research, we are poised to use our innovative mouse models to make discoveries that will lay the foundation for novel approaches to improve the efficacy of radiation therapy.

Public Health Relevance

The proposed research is relevant to public health because insight into how radiation therapy controls tumors is expected to lead to improved approaches to curing cancer with radiation therapy. Because radiation therapy is one of the most commonly used modalities to treat cancer, the proposed research is especially relevant to the part of the National Cancer Institute's mission to support research in the treatment of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Unknown (R35)
Project #
3R35CA197616-03S1
Application #
9581606
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Ogunbiyi, Peter
Project Start
2016-01-04
Project End
2022-12-31
Budget Start
2018-05-01
Budget End
2018-12-31
Support Year
3
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Duke University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Torok, Jordan A; Oh, Patrick; Castle, Katherine D et al. (2018) Deletion of ATM in tumor but not endothelial cells improves radiation response in a primary mouse model of lung adenocarcinoma. Cancer Res :
Van Mater, David; Xu, Eric; Reddy, Anupama et al. (2018) Injury promotes sarcoma development in a genetically and temporally restricted manner. JCI Insight 3:
Lee, Chang-Lung; Oh, Patrick; Xu, Eric S et al. (2018) Blocking Cyclin-Dependent Kinase 4/6 During Single Dose Versus Fractionated Radiation Therapy Leads to Opposite Effects on Acute Gastrointestinal Toxicity in Mice. Int J Radiat Oncol Biol Phys :
Oristian, Kristianne M; Crose, Lisa E S; Kuprasertkul, Nina et al. (2018) Loss of MST/Hippo Signaling in a Genetically Engineered Mouse Model of Fusion-Positive Rhabdomyosarcoma Accelerates Tumorigenesis. Cancer Res 78:5513-5520
Peacock, Jacqueline D; Pridgeon, Matthew G; Tovar, Elizabeth A et al. (2018) Genomic Status of MET Potentiates Sensitivity to MET and MEK Inhibition in NF1-Related Malignant Peripheral Nerve Sheath Tumors. Cancer Res 78:3672-3687
Liu, Xiaojing; Cooper, Daniel E; Cluntun, Ahmad A et al. (2018) Acetate Production from Glucose and Coupling to Mitochondrial Metabolism in Mammals. Cell 175:502-513.e13
Wisdom, Amy J; Mowery, Yvonne M; Riedel, Richard F et al. (2018) Rationale and emerging strategies for immune checkpoint blockade in soft tissue sarcoma. Cancer 124:3819-3829
Brownstein, Jeremy M; Wisdom, Amy J; Castle, Katherine D et al. (2018) Characterizing the Potency and Impact of Carbon Ion Therapy in a Primary Mouse Model of Soft Tissue Sarcoma. Mol Cancer Ther 17:858-868
Castle, Katherine D; Daniel, Andrea R; Moding, Everett J et al. (2018) Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome. Radiat Res 189:627-633
Kane 3rd, John M; Magliocco, Anthony; Zhang, Qiang et al. (2018) Correlation of High-Risk Soft Tissue Sarcoma Biomarker Expression Patterns with Outcome following Neoadjuvant Chemoradiation. Sarcoma 2018:8310950

Showing the most recent 10 out of 14 publications