The long-term goal of our laboratory is to understand how specific protein kinase signaling pathways function together with phosphoserine/threonine-binding domains and RNA binding proteins (RNA- BPs) to regulate tumor development after exposure to inflammation and genotoxic stress. We are particularly interested in understanding how these pathways can be manipulated to enhance cancer prevention, as well as to improve the response of any tumors that do form to conventional anti-cancer agents. In addition to the two canonical DNA damage response pathways that cells use to respond to DNA damage, the ATR-Chk1 pathway, and the ATM-Chk2 pathway, we recently identified a third DNA damage response pathway mediated by p38MAPK and MAPKAP Kinase-2 (MK2) that is absolutely essential for p53-defective tumor cells to survive after genotoxic stress. Importantly, the MK2 pathway is dispensable in cells with intact p53 function, making it an ideal target for specifically impairing the ability of cells undergoing cancer transformation to survive additional DNA damage. Unlike the ATR-Chk1 and ATM-Chk2 pathways that are dedicated to responding solely to signals from DNA damage, the p38 MAPK-MK2 pathway is a global stress-response pathway activated by multiple types of cellular stress, and plays a critical role in cytokine production during inflammation and early tumor development. Thus, we believe that the p38MAPK-MK2 pathway plays a particularly novel role during oncogenesis following genotoxic stress by integrating DNA damage response pathways within the damaged cells with inflammation and cytokine signaling arising in the adjacent stromal microenvironment. Importantly, both the DNA damage response function, and the cytokine production function of MK2, as well as many of the activities controlled by ATM-Chk2 and ATR-Chk1, appear to be mediated, in large part, by the action of RNA-BPs, which control gene expression at the post-transcriptional level. Finally, we and others have observed that certain xenobiotics appear to cause cell injury and death not through DNA damage, but instead through a distinct RNA damage response that has been very poorly characterized to date. In this proposal we (1) investigate the role of MK2 signaling in both the epithelial compartment and the inflammatory microenvironment in murine models of genotoxic stress-induced cancer development; (2) elucidate the emerging roles of RNA-binding proteins as key mediators of the cellular response to DNA damage; and (3) explore a poorly understood RNA damage response that induces profound apoptosis in a wide variety of epithelial tissues. The flexibility afforded by R-35 mechanism allows us to pursue these questions using a wide variety of combined experimental and computational approaches. The resulting mechanistic models are then tested in vivo using murine models of environmental stress-induced cancer and by querying human patient derived datasets, in order to achieve a transformational impact in the environmental health sciences.

Public Health Relevance

Human tumors frequently develop following environmental exposure to toxins and xenobiotics. These compounds result in DNA damage to epithelial cells and induce an inflammatory microenvironment. We believe that the protein kinase MK2, and a subset of critical RNA-binding proteins function as lynchpins connecting inflammation to cancer, and that therapeutic targeting of these molecule will both reduce the incidence of tumor formation in response to environmental/inflammatory stimuli, and dramatically enhance the ability of tumor cells to be killed by conventional anti-cancer agents. We also propose to characterize a poorly understood RNA damage response that is induced by environmental stress.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Unknown (R35)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Reinlib, Leslie J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Schools of Arts and Sciences
United States
Zip Code
Lam, Fred C; Morton, Stephen W; Wyckoff, Jeffrey et al. (2018) Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun 9:1991
Suarez-Lopez, Lucia; Sriram, Ganapathy; Kong, Yi Wen et al. (2018) MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis. Proc Natl Acad Sci U S A 115:E4236-E4244
Cannell, Ian G; Merrick, Karl A; Morandell, Sandra et al. (2015) A Pleiotropic RNA-Binding Protein Controls Distinct Cell Cycle Checkpoints to Drive Resistance of p53-Defective Tumors to Chemotherapy. Cancer Cell 28:623-637
Rameseder, Jonathan; Krismer, Konstantin; Dayma, Yogesh et al. (2015) A Multivariate Computational Method to Analyze High-Content RNAi Screening Data. J Biomol Screen 20:985-97
Qian, Wen-Jian; Park, Jung-Eun; Grant, Robert et al. (2015) Neighbor-directed histidine N (?)-alkylation: A route to imidazolium-containing phosphopeptide macrocycles. Biopolymers 104:663-73