For the past 23 years, our lab has focused on one of biology's central questions--how does the single cell zygote self-assemble itself into the complex body plan of an animal? Beginning with the dual functions of - catenin in cell adhesion and Wnt signaling, we focused our research in two different areas. In our first project, we explore how cells utilize cell-cell interactions to change shape, move, and assemble polarized tissues during morphogenesis and maintain these during tissue homeostasis, and how cells integrate different tools in the complex actin regulatory toolkit to create diverse actin structure. We explore this in Drosophila, using a highly multidisciplinary approach, and recently expanded to include parallel studies in cultured mammalian cells. Proteins on which we focus play key roles in mammalian development and cancer metastasis. Our current efforts explore two key issues in the field. First, we will determine the mechanisms by which cells link cell-cell junction to the actomyosin cytoskeleton to allow cell shape change without disrupting epithelial integrity. We hypothesize that cells use different linkers and junctional architectures to drive different key cell shape change or migratory events. Second, we will build on the existing knowledge of the biochemical functions of individual actin regulators to define how cells integrate these to create the diverse actin structures required during normal development, and how upstream signaling pathways shape this integration. In our second project, we explore how cells choose and maintain fate, using Wnt signaling as a model. Wnt signaling shapes virtually every organ system, plays a key role in homeostasis in many tissues, and is inappropriately activated in several common forms of cancer, including colon cancer, the second leading cause of cancer deaths. In the past ten years we focused on the tumor suppressor Adenomatous polyposis coli (APC), a key negative regulator of the Wnt signaling that is mutated in 80% of all colon cancers. APC also plays Wnt- independent roles in regulating the cytoskeleton, thus facilitating high-fidelity chromosome segregation, which is also disrupted in cancer. Our long-term goal is to determine how APC and its protein partners regulate both Wnt signaling and the cytoskeleton during normal development and homeostasis, and how that goes wrong in cancer. In the next funding period we will address two key questions in the field. First, we will define the mechanisms by which the multiprotein destruction complex targets the Wnt effector -catenin for phosphorylation, transfers it to an E3 ligase for ultimate proteasomal destruction, and how Wnt signals regulate its activity. This is a paradigm for how regulated protein stability regulates cell signaling. Second, we will explore the regulation of genome stability, defining how APC acts as a cytoskeletal regulator to ensure mitotic fidelity, and defining mechanisms that buffer its loss. More broadly, we will determine how the genetic circuitry of mitotic regulation and checkpoints is re-drawn in different tissues to meet different needs, contrasting epithelial cells and neural progenitors, using our newly developed Drosophila model of microcephaly.

Public Health Relevance

To form tissues and organs, cells must choose and maintain cell fates via cell-cell communication, adhere to one another, and must act together, by coordinating their cytoskeletons. Disruptions in cell adhesion and cell migration cause certain birth defects, contribute to blistering skin diseases and congenital heart disease, and also play a role in cancer metastasis, while most cases of colon cancer and many lung and endometrial tumors have inappropriate activation of the Wnt cell-cell signaling pathway, due to mutations in genes like the tumor suppressor APC. We developed model systems to explore how cell signaling, cell adhesion and the cytoskeleton are normally regulated, to allow better understanding of what goes wrong in human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Unknown (R35)
Project #
5R35GM118096-02
Application #
9276028
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Deatherage, James F
Project Start
2016-07-01
Project End
2021-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
2
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Bonello, Teresa T; Peifer, Mark (2018) Scribble: A master scaffold in polarity, adhesion, synaptogenesis, and proliferation. J Cell Biol :
Perez-Vale, Kia Z; Peifer, Mark (2018) Modulating apical-basal polarity by building and deconstructing a Yurt. J Cell Biol 217:3772-3773
Fadero, Tanner C; Gerbich, Therese M; Rana, Kishan et al. (2018) LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching. J Cell Biol 217:1869-1882
Schaefer, Kristina N; Bonello, Teresa T; Zhang, Shiping et al. (2018) Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet 14:e1007339
Bonello, Teresa T; Perez-Vale, Kia Z; Sumigray, Kaelyn D et al. (2018) Rap1 acts via multiple mechanisms to position Canoe and adherens junctions and mediate apical-basal polarity establishment. Development 145:
Pronobis, Mira I; Deuitch, Natalie; Posham, Vinya et al. (2017) Reconstituting regulation of the canonical Wnt pathway by engineering a minimal ?-catenin destruction machine. Mol Biol Cell 28:41-53
Gladfelter, Amy S; Peifer, Mark (2017) What your PI forgot to tell you: why you actually might want a job running a research lab. Mol Biol Cell 28:1724-1727
Poulton, John S; Cuningham, John C; Peifer, Mark (2017) Centrosome and spindle assembly checkpoint loss leads to neural apoptosis and reduced brain size. J Cell Biol 216:1255-1265
Peifer, Mark (2017) The argument for diversifying the NIH grant portfolio. Mol Biol Cell 28:2935-2940
Pronobis, Mira I; Deuitch, Natalie; Peifer, Mark (2016) The Miraprep: A Protocol that Uses a Miniprep Kit and Provides Maxiprep Yields. PLoS One 11:e0160509

Showing the most recent 10 out of 12 publications