My laboratory investigates the properties of natural and chemically modified nucleic acids. Working at the interface of cell biology and nucleic acid chemistry we have modified cellular activities including transcription, translation, allele-selectie inhibition of protein expression, splicing, and telomerase-mediated elongation of telomeres. For 2016-2020 our central goal is to examine the recognition of cellular RNA with a primary focus on nuclear RNA. We will apply that understanding to methods for controlling gene expression and new insights into natural pathways of gene regulation. Much of the genome is transcribed into RNAs that do not encode proteins. The function of many noncoding RNAs is unclear, as is the mechanism for how they might affect gene expression. Published reports offer little insight into the molecular details for how a specific noncoding RNA affects expression of a given gene. In the absence of this information, validation of proposed effects becomes problematic and the predictive power for studying novel genes is limited. This lack of guiding mechanistic principles is a major obstacle to progress. RNAi provides a potential mechanism for recognizing specific nuclear RNA species. While RNAi is well-known as a driving force for recognition of mRNA in the cytoplasm of mammalian cells, its potential to drive recognition in the somatic cell nuclei has been unclear. We propose to define the scope and mechanism of mammalian nuclear RNAi and to apply it to novel disease targets. Objective 1. Understand nuclear RNAi. We will characterize the protein and RNA interactions involved in nuclear RNAi. RNAseq will be used to identify RNA targets for functional validation. Mass spectrometry will be used to determine protein partners. We will explore the mechanism of nuclear RNAi and obtain insights into the how nuclear RNAi regulates gene expression in mammalian cells. These data will reveal how argonaute proteins and other RNAi factors function in the nucleus to control gene expression. Objective 2. Novel targets for nucleic acids inside cells. We will also expand recognition to novel nucleic acids targets including the expanded intronic repeats within the mutant frataxin and C9orf72 genes. These data will further develop our understanding of the mechanism of nuclear RNAi and show how nuclear RNAi can be applied to the control of disease gene expression. Compounds that control frataxin protein expression or disrupt structures formed by the expanded repeat within intronic C9orf72 would be lead compounds for drug development.

Public Health Relevance

Our goal is to understand the recognition of nucleic acids inside cells. One focus will be RNA- mediated recognition in cell nuclei. We will use our understanding of mechanism to develop new methods to control expression of genes involved in disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Unknown (R35)
Project #
5R35GM118103-02
Application #
9252483
Study Section
Special Emphasis Panel (ZGM1-TRN-9 (MR))
Program Officer
Bender, Michael T
Project Start
2016-04-01
Project End
2021-03-31
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
2
Fiscal Year
2017
Total Cost
$493,649
Indirect Cost
$188,927
Name
University of Texas Sw Medical Center Dallas
Department
Pharmacology
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Shen, Xiulong; Corey, David R (2018) Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res 46:1584-1600
Liu, Jing; Liu, Zhongtian; Corey, David R (2018) The Requirement for GW182 Scaffolding Protein Depends on Whether Argonaute Is Mediating Translation, Transcription, or Splicing. Biochemistry 57:5247-5256
Shen, Xiulong; Kilikevicius, Audrius; O'Reilly, Daniel et al. (2018) Activating frataxin expression by single-stranded siRNAs targeting the GAA repeat expansion. Bioorg Med Chem Lett 28:2850-2855
Hu, Jiaxin; Rong, Ziye; Gong, Xin et al. (2018) Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs' dystrophy. Hum Mol Genet 27:1015-1026
Li, Liande; Shen, Xiulong; Liu, Zhongtian et al. (2018) Activation of Frataxin Protein Expression by Antisense Oligonucleotides Targeting the Mutant Expanded Repeat. Nucleic Acid Ther 28:23-33
Liu, Jing; Hu, Jiaxin; Ludlow, Andrew T et al. (2017) c9orf72 Disease-Related Foci Are Each Composed of One Mutant Expanded Repeat RNA. Cell Chem Biol 24:141-148
Hu, Jiaxin; Rigo, Frank; Prakash, Thazha P et al. (2017) Recognition of c9orf72 Mutant RNA by Single-Stranded Silencing RNAs. Nucleic Acid Ther 27:87-94
Matsui, Masayuki; Corey, David R (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16:167-179
Hicks, Jessica A; Li, Liande; Matsui, Masayuki et al. (2017) Human GW182 Paralogs Are the Central Organizers for RNA-Mediated Control of Transcription. Cell Rep 20:1543-1552
Corey, David R (2016) Synthetic Nucleic Acids and Treatment of Neurological Diseases. JAMA Neurol 73:1238-1242

Showing the most recent 10 out of 12 publications