Mitochondria allow our cells to use oxidative phosphorylation (OXPHOS) as a highly efficient way to generate ATP. The inner membrane-embedded OXPHOS system enzymes are multimeric complexes composed of proteins from two different genetic origins, namely the nuclear and the mitochondrial DNA. Nucleus-encoded proteins are synthesized in cytoplasmic ribosomes and imported into mitochondria. The mitochondrion-encoded proteins, usually catalytic core subunits of the complexes, are synthesized into distinct mitochondrial ribosomes. We have developed a scientific research program aiming at understanding the molecular mechanisms underlying the assembly of OXPHOS complexes and mitochondrial ribosomes. Our studies focus on the assembly of OXPHOS enzymes as individual complexes, with a focus on cytochrome c oxidase, the terminal oxidase of the mitochondrial respiratory chain. We have uncovered translational regulation, heme and redox sensing processes ruling COX biogenesis in yeast and/or human cells. Additionally, we aim to understand how OXPHOS complexes form higher order assemblies known as supercomplexes or respirasomes. We have already reported the first respirasome assembly pathway in human cells. Dedicated chaperone-like factors are required to assist and regulate complex and supercomplex assembly in mitochondria. While many have been already identified, their specific functions remain to be precisely characterized. In another aspect of our work we address the question of how mitochondrial ribosomes assemble into functional protein synthesis machineries. We have recently identified the first two DEAD-box RNA helicases acting on the assembly of the large mitoribosome subunit in yeast and human cells. Also, we have gained insight into the compartmentalization of the ribosome assembly process by identifying matrix RNA granules as the mitochondriolus (per equivalence to the nucleoulus). Despite high-resolution cryo-EM structures of yeast and human ribosomes have been recently reported, the pathway of mitoribosome biogenesis and the factors involved are poorly characterized. Studies outlined in this proposal will involve yeast genetics, gene disruption in human cells using new gene-editing techniques (TALENs and CRISPRs) and mechanistic biochemistry in yeast, human cell lines, isolated mitochondria and purified native and recombinant proteins to gain insight into the role/s of OXPHOS complex, supercomplex and mitoribosome assembly factors. To further fill the gaps, we are implementing innovative strategies to identify new assembly factors and to define the biosynthetic pathways under study, by applying quantitative mass spectrometry and structural approaches. The analysis of the principles of the biogenesis process and the activities of the assembly factors is of central importance for our understanding of the molecular basis of human mitochondrial disorders.

Public Health Relevance

The goal of this MIRA grant application is to develop a program aiming to understand the biogenesis of mitochondrial membranes, with a focus on (1) oxidative phosphorylation (OXPHOS) individual enzymes and supercomplexes, and (2) mitoribosomes and the mitochondrial translation machinery, as they occur in yeast and human cells. Disorders arising from impaired mitochondrial OXPHOS function or mitochondrial gene expression, including protein synthesis, result in a variety of pathologies including encephalomyopathies and cardiomyopathies. Identifying and characterizing factors required for OXPHOS enzyme assembly, mitoribosome biogenesis and translation, and the pathways in which they act is a prerequisite towards understanding the molecular basis of these disorders.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Unknown (R35)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-TRN-7 (MR))
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Miami School of Medicine
Schools of Medicine
Coral Gables
United States
Zip Code
Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas et al. (2018) Guidelines and recommendations on yeast cell death nomenclature. Microb Cell 5:4-31
Timón-Gómez, Alba; Nývltová, Eva; Abriata, Luciano A et al. (2018) Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Semin Cell Dev Biol 76:163-178
Zeng, Rui; Smith, Erin; Barrientos, Antoni (2018) Yeast Mitoribosome Large Subunit Assembly Proceeds by Hierarchical Incorporation of Protein Clusters and Modules on the Inner Membrane. Cell Metab 27:645-656.e7
Guedes-Monteiro, Raquel Fonseca; Ferreira-Junior, José Ribamar; Bleicher, Lucas et al. (2018) Mitochondrial ribosome bL34 mutants present diminished translation of cytochrome c oxidase subunits. Cell Biol Int 42:630-642
Burstein, S R; Valsecchi, F; Kawamata, H et al. (2018) In vitro and in vivo studies of the ALS-FTLD protein CHCHD10 reveal novel mitochondrial topology and protein interactions. Hum Mol Genet 27:160-177
Lobo-Jarne, Teresa; Nývltová, Eva; Pérez-Pérez, Rafael et al. (2018) Human COX7A2L Regulates Complex III Biogenesis and Promotes Supercomplex Organization Remodeling without Affecting Mitochondrial Bioenergetics. Cell Rep 25:1786-1799.e4
De Silva, Dasmanthie; Poliquin, Sarah; Zeng, Rui et al. (2017) The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. Nucleic Acids Res 45:6628-6643
Kim, Hyun-Jung; Maiti, Priyanka; Barrientos, Antoni (2017) Mitochondrial ribosomes in cancer. Semin Cancer Biol 47:67-81
Bourens, Myriam; Barrientos, Antoni (2017) Human mitochondrial cytochrome c oxidase assembly factor COX18 acts transiently as a membrane insertase within the subunit 2 maturation module. J Biol Chem 292:7774-7783
Bourens, Myriam; Barrientos, Antoni (2017) A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep 18:477-494

Showing the most recent 10 out of 12 publications