Neuroendocrine and metabolic stressors threaten cellular and organismal integrity, leading to maladaptive cellular changes and disease unless met by adaptive remodeling of nuclear gene expression. Mitochondria are central to these adaptations. Recent findings indicate that mitochondria participate in a three- step intracellular signal transduction system involving sensing, signal integration and transduction to the nucleus where they regulate the majority of genes within the human genome. In this way, mitochondria are a emerging as determinants of cellular and organismal adaptation to common stressors. The overall objective of this proposal is to define novel mechanisms of mitochondria-mitochondria and mitochondria-nuclear signaling leading to gene expression remodeling. To achieve this, my laboratory uses use drug-inducible inter-organellar linker technology to manipulate mito-mito and mito-nuclear interactions in muscle cells, coupled to high-resolution quantitative light and electron microscopy approaches to track organelle interactions. We exploit high-throughput functional assays, metabolomics, and transcriptomics to visualize and understand the resulting nuclear transcriptional responses patterns to stressors. To disentangle the relative contributions of mitochondrial network organization and functions to mitochondrial signaling, we leverage unique trans-mitochondrial cell and animal models, as well as mitochondria-targeted small molecule antioxidants and pharmacological agents. Candidate signaling pathways will be validated using parallel genetic and biochemical experiments. Most promising pathways will be extended in follow up studies using a near- experimental human disease model of primary mitochondrial DNA defects to validate our findings in humans. Together, this combined approach will investigate specific components of the mitochondria-nuclear communication system and their relevance to human disease. This work will establish the physical basis for gene expression regulation by mitochondria, and serve as the foundation for further work aiming to circumvent maldaptative cellular and organismal responses to stressors and mitochondrial dysfunction.

Public Health Relevance

Mitochondria communicate with the nucleus where they drive specific gene expression programs, and recent studies indicate that this signal transduction system is governed by mitochondrial network organization, fusion/fission dynamics, and mitochondrial proximity to the nucleus. I propose the use of novel inducible inter- organellar linkers, and genetic manipulation of mitochondrial network morphology, to test the role of mito-mito and mito-nuclear interactions on nuclear transcriptional responses patterns. I propose to test these mechanisms in muscle cells, and possibly in other systems, where mitochondrial defects contribute to stress pathophysiology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Unknown (R35)
Project #
5R35GM119793-05
Application #
9925788
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Anderson, Vernon
Project Start
2016-09-01
Project End
2021-05-31
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
5
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Psychiatry
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Picard, Martin; McEwen, Bruce S (2018) Psychological Stress and Mitochondria: A Systematic Review. Psychosom Med 80:141-153
Picard, Martin; McEwen, Bruce S; Epel, Elissa S et al. (2018) An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol 49:72-85
Vincent, Amy E; Rosa, Hannah S; Pabis, Kamil et al. (2018) Subcellular origin of mitochondrial DNA deletions in human skeletal muscle. Ann Neurol 84:289-301
Kaufman, Brett A; Picard, Martin; Sondheimer, Neal (2018) Mitochondrial DNA, nuclear context, and the risk for carcinogenesis. Environ Mol Mutagen :
Picard, Martin; McEwen, Bruce S (2018) Psychological Stress and Mitochondria: A Conceptual Framework. Psychosom Med 80:126-140
Vincent, Amy E; Turnbull, Doug M; Eisner, Veronica et al. (2017) Mitochondrial Nanotunnels. Trends Cell Biol 27:787-799
Picard, Martin; Juster, Robert-Paul; Sloan, Richard P et al. (2017) Mitochondrial Nexus to Allostatic Load Biomarkers. Psychosom Med 79:114-117