The overall goal of this project is to understand how microtubule motors kinesin and dynein organize cytoskeleton in interphase cells and, as a result, drive cell polarization. Our group recently discovered that major motor proteins, kinesin-1 and cytoplasmic dyneins, in addition to moving many types of cargoes along microtubules, have a new function: they define the distribution and dynamic behavior of two classes of cytoskeletal filaments, microtubules and intermediate filaments in interphase cells. We have shown that both microtubules and intermediate filaments are being transported as polymers by motor proteins. This transport defines general organization of the cytoskeleton, and, as a result, cell polarity. Three biological models of polarization studied in this proposal are: (i) Drosophila neurons, where movement of microtubules by kinesin-1 drives initial extension of axons and dendrites, and cortical dynein sorts axonal microtubules into uniformly polarized arrays; (ii) Drosophila oocytes, where transport of microtubules by kinesin-1 drives rotation of cytoplasm for localization of polarity determinants critical for the developing embryo, and cytoplasmic dynein transports microtubules in nurse cells and from nurse cells to the oocyte and (iii) transport of intermediate filaments along microtubules in mammalian cells, which is important for directed cell migration.

Public Health Relevance

Cell polarity is of utmost importance for development of a multicellular organism. Polarity is generated by targeted positioning of cytoskeletal elements and directed delivery and anchoring of specific proteins and RNA. These processes are the result of action of molecular motor moving on microtubules and actin cytoskeleton. Motors, cytoskeletal filaments and their cargoes are potential targets for new drugs that could potentially be used to treat developmental and neurodegenerative diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Unknown (R35)
Project #
5R35GM131752-02
Application #
9948693
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Ainsztein, Alexandra M
Project Start
2019-06-07
Project End
2024-05-31
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
2
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611