Integrin-based adhesions are central to the functions of blood and vascular cells. The heterogeneity of adhesions and their dynamic evolution has complicated efforts to study their fine composition, assembly, and disassembly. Our studies have shown that a transition between two adhesion archetypes is controlled by a simple binary molecular switch of vinculin competition with and displacement of RIAM or lamellipodin(Lpd), members of the MRL family, from binding sites on talin's rod domain. Furthermore, we developed methods to image the complex of MRL proteins with integrins and talin (MIT complex) and showed that it formed the tips of ?sticky fingers,? cellular protrusions that sense the density of matrix proteins and physical state of the substrate during mesenchymal cell migration. mesenchymal cell migration. We hypothesize that the MIT complex represents one among many distinct modules that contribute to the overall structure and function of integrin- based adhesions. This suggests the paradigm that the integrin adhesome can be analyzed as a dynamic assembly of these modules, which form prior to entry into the adhesions. This concept has enabled us to propose a new approach to studying adhesions by developing methods to purify each module formed prior to integrin ligation. To test this paradigm, we propose to purify 4 such modules and to characterize each for a) the presence of talin-activated integrins b) characterize its protein composition. c) establish its biochemical topology and regulation d) visualize it in living cells and e) evaluate its functions The proposed experiments will generate foundational data for the adhesion field in three ways: a) the integrin adhesome will be re- interpreted as a compendium of modular components; each with its own specific composition. b) The functional studies will identify new regulators of blood and vascular cell adhesion and signaling that may be exploitable as therapeutic targets c) A complete definition of the protein composition of each module will serve as a public resource for the analysis of integrin-based adhesions and will be hypothesis-generating for future studies to understand the regulation of assembly of each module and its functional outputs.

Public Health Relevance

We propose a new paradigm to understand how cells assemble cytoplasmic anchoring and signaling complexes at sites in the body to which they adhere. Our newly developed methods will enable us to obtain a complete accounting of the contents of the modular building blocks of these adhesions and to use that information to understand how these adhesions can control processes such as the passage of white blood cells through the body, the clumping of platelets that leads to heart attack and stroke, and the health and behavior of the endothelial cells that line our blood vessels.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Unknown (R35)
Project #
5R35HL139947-04
Application #
10075959
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Olive, Michelle
Project Start
2018-01-01
Project End
2024-12-31
Budget Start
2021-01-01
Budget End
2021-12-31
Support Year
4
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Klann, Jane E; Kim, Stephanie H; Remedios, Kelly A et al. (2018) Integrin Activation Controls Regulatory T Cell-Mediated Peripheral Tolerance. J Immunol 200:4012-4023
Sun, Hao; Lagarrigue, Frederic; Gingras, Alexandre R et al. (2018) Transmission of integrin ?7 transmembrane domain topology enables gut lymphoid tissue development. J Cell Biol 217:1453-1465
Lagarrigue, Frederic; Gingras, Alexandre R; Paul, David S et al. (2018) Rap1 binding to the talin 1 F0 domain makes a minimal contribution to murine platelet GPIIb-IIIa activation. Blood Adv 2:2358-2368
Lopez-Ramirez, Miguel Alejandro; Fonseca, Gregory; Zeineddine, Hussein A et al. (2017) Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J Exp Med 214:3331-3346
Lagarrigue, Frederic; Gertler, Frank B; Ginsberg, Mark H et al. (2017) Cutting Edge: Loss of T Cell RIAM Precludes Conjugate Formation with APC and Prevents Immune-Mediated Diabetes. J Immunol 198:3410-3415