Principal Investigator (Last, first, middle): KLEINFELD, DAVID We propose to advance our understanding of the key factors involved in the distribution of blood within the brain. Our focus begins with the relation of flow dynamics to the topology of the underlying angioachitecture. In cortex, a highly interconnected network of surface vessels and a network of subsurface vasculature were shown to be effective in distributing blood and in providing a robust immunity to occlusions. In contrast, the penetrating arterioles that shuttle blood from the cortical surface to the underlying microvessels were shown to be a bottleneck to the supply of blood within the brain and a locus for cognitive decline after a microstroke. We will determine if other brain areas follow the same vascular plan or rather have a different set of design rules. Our initial emphasis is on hippocampus, given the great sensitivity of hippocampal neurons to ischemia. While the topology of the vasculature is fixed, the diameter and thus the resistance to flow of individual can change. First, the diameter of brain blood vessels changes with vasomotion at a frequency of 0.1 Hz. It is not known if this slow signal phase-locks to vasomotion in a distant region or in the contralateral hemisphere that is also activated by a common stimulus. We will determine the effects of awake sensory stimulation on vasomotion along pathways over large regions of cortex. The finding of activity induced correlation of vasomotion should have implications as a basis for the functional connectivity derived by bold oxygenation level dependent (BOLD) functional magnetic resonant imaging (fMRI). A second aspect of neurovascular signaling concerns changes in diameter in arterioles and potentially microvascular capillaries in response to modulators released by stimulus-induced neural activity. The mechanism by which neural activity leads to both vasoconstriction and to vasodilation is a puzzle. We will determine the competitive nature of vasoactive signaling by concomitant measure of extrasynaptic modulator concentration and activation of specific neuronal subtypes in terms of their affects on changing blood flow through vasoconstriction or vasodilation. We note that all of the proposed experiments make use of a broad range of technologies, ranging from behavior to physiology to probes to imaging, and thus provide a fertile test bed for scientific discovery as well as a means to train the next generation of neuroscientists as generalists.

Public Health Relevance

Program Director (Last, first, middle): Kleinfeld, David We propose to delineate the nature of blood flow in the brain, with the goal of relating flow dynamics to the topology of the underlying vasculature. This provides a basis for understanding how different brain areas are perfused, how different brain areas are susceptible to occlusions to flow, as occur during stroke, and how different brain areas control their own flow of blood. The proposed work further bears on determining the biophysical basis for coordinated patterns of flow across the brain, which define functional connections and may be used to detect normal versus dysfunctional neuronal signaling.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Unknown (R35)
Project #
5R35NS097265-03
Application #
9600087
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Corriveau, Roderick A
Project Start
2016-12-01
Project End
2024-11-30
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
3
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Type
University-Wide
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Friedman, Beth; Whitney, Michael A; Savariar, Elamprakash N et al. (2018) Detection of Subclinical Arthritis in Mice by a Thrombin Receptor-Derived Imaging Agent. Arthritis Rheumatol 70:69-79
Papadopoulos, Lia; Blinder, Pablo; Ronellenfitsch, Henrik et al. (2018) Comparing two classes of biological distribution systems using network analysis. PLoS Comput Biol 14:e1006428
He, Yi; Wang, Maosen; Chen, Xuming et al. (2018) Ultra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and Their Correlation with Neuronal Intracellular Calcium Signals. Neuron 97:925-939.e5
Mateo, Celine; Knutsen, Per M; Tsai, Philbert S et al. (2017) Entrainment of Arteriole Vasomotor Fluctuations by Neural Activity Is a Basis of Blood-Oxygenation-Level-Dependent ""Resting-State"" Connectivity. Neuron 96:936-948.e3
Báez-Yánez, Mario Gilberto; Ehses, Philipp; Mirkes, Christian et al. (2017) The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI. Neuroimage 163:13-23
Gould, Ian Gopal; Tsai, Philbert; Kleinfeld, David et al. (2017) The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J Cereb Blood Flow Metab 37:52-68