Frontotemporal lobar degeneration (FTLD), a common cause of early-onset dementia, encompasses a group of disorders with significant genetic, clinical and neuropathological heterogeneity. Understanding the diverse underlying mechanisms of FTLD pathogenesis is a fundamental area of interest of my research program. To accelerate scientific discovery, we have adopted a comprehensive approach that investigates multiple FTLD mechanisms driven by key molecular players (e.g., TDP-43, progranulin, and tau). We also place great emphasis on translational research geared towards identifying much needed biomarkers and therapies, an area of particular importance given that there exists no treatment for FTLD. Our endeavors to uncover the pathomechanisms associated with TDP-43, tau and FTLD-causing mutations have yielded seminal findings published in high-impact journals. For instance, in the five years since the discovery of the G4C2 repeat expansions in C9ORF72 as the most common known cause of FTLD, my group identified a new neuropathological hallmark specific to this mutation, namely the accumulation of proteins of repeating dipeptides synthesized from the expansion; made significant strides in elucidating mechanisms of disease relating to these so-called c9RAN proteins; identified promising therapeutic strategies and potential biomarkers for C9ORF72 repeat expansion carriers; and developed the first mouse model to recapitulate both neuropathological and clinical features of patients. Our productivity is influenced by the excellent research environment fostered at Mayo Clinic, which brings together highly interactive and devoted neurobiologists, geneticists, neuropathologists and physician scientists, as well as the numerous collaborations we have forged with world-renowned experts in the field. Herein, we propose to extend our discoveries by addressing impactful questions, some of which may be high risk, but all with clear potential to be transformative to the field. Of importance, the nature of the R35 mechanism will allow us the flexibility to explore intriguing new directions that emerge from our findings and those of others, ensuring that our studies remain timely and relevant. Overall, with the goal of advancing our understanding and developing therapies for FTLD, we propose mechanistic and translational investigations relating to three main areas: 1) C9ORF72-linked FTLD-TDP; 2) GRN-linked FTLD-TDP; and 3) FTLD-Tau. We will explore various therapeutic approaches, seek to identify disease-relevant biomarkers in cerebrospinal fluid and blood, and develop and improve FTLD animal models.

Public Health Relevance

Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease negatively affecting the personality, behavior and language of patients, for which there is no cure. Our goals are to define the abnormal processes that contribute to the development of FTLD, as well as devise strategies to monitor and prevent disease progression. The novel insight and translational nature of our findings are expected to transform the field and improve the prognosis for patients with FTLD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Unknown (R35)
Project #
5R35NS097273-03
Application #
9607644
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Sutherland, Margaret L
Project Start
2016-12-01
Project End
2024-11-30
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
3
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Mayo Clinic Jacksonville
Department
Type
DUNS #
153223151
City
Jacksonville
State
FL
Country
United States
Zip Code
32224
Eftekharzadeh, Bahareh; Daigle, J Gavin; Kapinos, Larisa E et al. (2018) Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron 99:925-940.e7
Kang, Silvia S; Ebbert, Mark T W; Baker, Kelsey E et al. (2018) Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med 215:2235-2245
Ebbert, Mark T W; Farrugia, Stefan L; Sens, Jonathon P et al. (2018) Long-read sequencing across the C9orf72 'GGGGCC' repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol Neurodegener 13:46
Sanchez-Contreras, Monica Y; Kouri, Naomi; Cook, Casey N et al. (2018) Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Mol Neurodegener 13:37
Wang, Zi-Fu; Ursu, Andrei; Childs-Disney, Jessica L et al. (2018) The Hairpin Form of r(G4C2)exp in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules. Cell Chem Biol :
Mordes, Daniel A; Prudencio, Mercedes; Goodman, Lindsey D et al. (2018) Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol Commun 6:55
Lee, Chris W; Stankowski, Jeannette N; Chew, Jeannie et al. (2017) The lysosomal protein cathepsin L is a progranulin protease. Mol Neurodegener 12:55
Prudencio, Mercedes; Gonzales, Patrick K; Cook, Casey N et al. (2017) Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum Mol Genet 26:3421-3431
Carlomagno, Yari; Chung, Dah-Eun Chloe; Yue, Mei et al. (2017) An acetylation-phosphorylation switch that regulates tau aggregation propensity and function. J Biol Chem 292:15277-15286
Finch, NiCole A; Wang, Xue; Baker, Matthew C et al. (2017) Abnormal expression of homeobox genes and transthyretin in C9ORF72 expansion carriers. Neurol Genet 3:e161

Showing the most recent 10 out of 14 publications