The goal of the proposed research is determine how competition at the level of host population immunity and transmission fitness drives genetic diversification of microbial pathogens-changes that underlie shifts in disease pattern and are fundamental to the understanding of how new pathogens emerge. Specifically, we are focused on microbial pathogens that employ gene conversion as a mechanism to generate antigenic variants, evade clearance by the immune system, and persist within mammalian host reservoirs-pathogens that can be broadly diverse in taxon (e.g. the bacterium Borrelia versus the protozoa Trypanosoma) but united by these common persistence and variant evolution mechanisms. These pathogens generate within- host antigenic variants using genomic complements of variant donor alleles. There is strong selective pressure for sufficient diversity among the variant alleles in the genome to evade clearance and persist, as within host persistence dramatically increases the likelihood of successful ongoing transmission. This pressure alone would lead to strain homogeneity as defined by the allelic repertoire within a pathogen species rather than the emergence and heterogeneity. In our work, we identified strain superinfection as an opposing selective pressure that drives allelic diversification among strains of a pathogen, strain emergence, and heterogeneity. Penetration of a new strain into a region with a high prevalence of infection and consequent broad immunity against the variants encoded by an existing endemic strain requires that the new strain encode variants that will be immunologically novel and allow establishment of infection. This pressure is hypothesized to favor continual genetic probing for selective advantage and to result in the genetic change that underlies shifts in transmission and disease patterns. Understanding how this occurs in bacteria and protozoa, complex pathogens that cannot rely on mutation and the large progeny burst size as do viruses, and the consequences for transmission within endemic zones is the goal. Using Anaplasma marginale as a model in which we can study pathogen infectivity and transmission in a natural mammalian host, we determine how the two contrasting selective pressures mold strain structure and test the kinetics of new strain emergence in the host population. Importantly, we link the effect of strain emergence, defined by expression of a novel variant-encoding allele, on its transmission fitness and persistence and expansion in the host population. This knowledge of the kinetics of pathogen emergence is critically important to understand how new genomically complex pathogens fail or succeed in changing disease patterns.

Public Health Relevance

Understanding how microbial pathogens undergo genetic change under natural selective pressures represents a major gap in knowledge in emerging infectious diseases research and is specifically relevant to public health as genetic change underlies shifts in disease phenotype, including new patterns of transmission, gain or loss of virulence, and adaptation to new host species.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
4R37AI044005-16
Application #
8484936
Study Section
Special Emphasis Panel (NSS)
Program Officer
Perdue, Samuel S
Project Start
1998-12-01
Project End
2018-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
16
Fiscal Year
2014
Total Cost
$305,775
Indirect Cost
$103,275
Name
Washington State University
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
041485301
City
Pullman
State
WA
Country
United States
Zip Code
99164
Gall, Cory A; Scoles, Glen A; Magori, Krisztian et al. (2017) Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks. Microbiome 5:133
Magunda, Forgivemore; Thompson, Chelsea Wright; Schneider, David A et al. (2016) Anaplasma marginale Actively Modulates Vacuolar Maturation during Intracellular Infection of Its Tick Vector, Dermacentor andersoni. Appl Environ Microbiol 82:4715-4731
Beckley, Carl S; Shaban, Salisu; Palmer, Guy H et al. (2016) Disaggregating Tropical Disease Prevalence by Climatic and Vegetative Zones within Tropical West Africa. PLoS One 11:e0152560
Gall, Cory A; Reif, Kathryn E; Scoles, Glen A et al. (2016) The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J 10:1846-55
Graça, Telmo; Silva, Marta G; Kostyukova, Alla S et al. (2016) Structural Basis for Recombinatorial Permissiveness in the Generation of Anaplasma marginale Msp2 Antigenic Variants. Infect Immun 84:2740-7
Truchan, Hilary K; Cockburn, Chelsea L; Hebert, Kathryn S et al. (2016) The Pathogen-Occupied Vacuoles of Anaplasma phagocytophilum and Anaplasma marginale Interact with the Endoplasmic Reticulum. Front Cell Infect Microbiol 6:22
Noh, Susan M; Dark, Michael J; Reif, Kathryn E et al. (2016) Superinfection Exclusion of the Ruminant Pathogen Anaplasma marginale in Its Tick Vector Is Dependent on the Time between Exposures to the Strains. Appl Environ Microbiol 82:3217-3224
Palmer, Guy H; Bankhead, Troy; Seifert, H Steven (2016) Antigenic Variation in Bacterial Pathogens. Microbiol Spectr 4:
Ducken, Deirdre R; Brown, Wendy C; Alperin, Debra C et al. (2015) Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein. PLoS One 10:e0129309
Graça, Telmo; Paradiso, Lydia; Broschat, Shira L et al. (2015) Primary Structural Variation in Anaplasma marginale Msp2 Efficiently Generates Immune Escape Variants. Infect Immun 83:4178-84

Showing the most recent 10 out of 41 publications