Artemisinin combination therapies (ACTs) are the mainstay of treatment for Plasmodium falciparum. However, slow clearance of parasites from the blood following treatment with ACTs in some SE Asian countries has raised fears of impending resistance. The central goals of this renewal application are to identify parasite genes that underlie slow clearance rate (CR) following treatment with artemisinin (ART), to understand the evolution of this trait, and to probe the underlying mechanisms using transfection. To identify markers for slow CR, we will work with malaria parasites from the Thai-Burma border, because patients in this region show a wide range of CR following ART treatment, and we have shown that the most (58%) of the variation in CR can be explained by parasite genetic factors. We will use 650 finger-prick parasite DNA samples collected since 2007 for this analysis. These samples are genetically unique (from genotyping 96 SNPs), contain single malaria genotypes and have robust (6 hourly) measures of parasite clearance rate. We will genotype these samples at 16,875 polymorphic single nucleotide polymorphisms (SNPs) using a Nimblegen microarray specifically designed for SE Asian parasites, impute additional SNPs from a Thai reference parasite population for which 101 whole genome sequences are available, and identify the genes that underlie CR using a genome wide association study (GWAS). To confirm involvement of these loci, we will genotype candidate genes identified in 12 independent parasite populations from six SE Asian countries, with 10 year longitudinal sampling from Thailand and Cambodia. These data will allow verification of associations from our GWAS, determine the distribution of causative alleles, track changes in allele frequency of candidate loci over time, and identify numbers of independent origins of this trait. There are currently no good phenotypic assays of the slow CR trait for use in the laboratory. We will evaluate the utility of two promising measures, a quantitative recrudescence assay and a flow cytometry-based growth assay, which effectively differentiate between ART resistant parasites selected in the laboratory and their sensitive progenitors. This will be done using panels of slow and fast clearing parasites from the Thai-Burma border, for which cryopreserved stocks are available. Finally, to determine causality and investigate the underlying mechanisms of slow CR, we will manipulate expression of candidate genes and examine how this alters surrogate in vitro measures associated with the slow CR phenotype. Effective partner drugs are critical for maintaining effective treatment using ACTs. We will also use transfection to examine candidate markers for resistance to partner drugs identified from a GWAS study conducted during the previous grant period.

Public Health Relevance

Artemisinin combination therapy (ACT) is the main treatment for Plasmodium falciparum malaria: the success of this treatment has rolled back malaria and renewed interest in malaria elimination. Slow clearance of parasites following ACT treatment of patients in SE Asia has lead to concern about the spread of resistance. This proposal aims to identify the genes that underlie slow clearance to better understand the evolution and biochemical basis of his trait.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
Joy, Deirdre A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Texas Biomedical Research Institute
San Antonio
United States
Zip Code
Nair, Shalini; Li, Xue; Arya, Grace A et al. (2018) Fitness Costs and the Rapid Spread of kelch13-C580Y Substitutions Conferring Artemisinin Resistance. Antimicrob Agents Chemother 62:
Taylor, Aimee R; Schaffner, Stephen F; Cerqueira, Gustavo C et al. (2017) Quantifying connectivity between local Plasmodium falciparum malaria parasite populations using identity by descent. PLoS Genet 13:e1007065
Ataíde, Ricardo; Powell, Rosanna; Moore, Kerryn et al. (2017) Declining Transmission and Immunity to Malaria and Emerging Artemisinin Resistance in Thailand: A Longitudinal Study. J Infect Dis 216:723-731
Cerqueira, Gustavo C; Cheeseman, Ian H; Schaffner, Steve F et al. (2017) Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 18:78
Anderson, Timothy J C; Nair, Shalini; McDew-White, Marina et al. (2017) Population Parameters Underlying an Ongoing Soft Sweep in Southeast Asian Malaria Parasites. Mol Biol Evol 34:131-144
Phyo, Aung Pyae; Ashley, Elizabeth A; Anderson, Tim J C et al. (2016) Reply to Meshnick and Hastings et al. Clin Infect Dis 63:1528-1529
Phyo, Aung Pyae; Ashley, Elizabeth A; Anderson, Tim J C et al. (2016) Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai-Myanmar Border (2003-2013): The Role of Parasite Genetic Factors. Clin Infect Dis 63:784-791
Grist, Eric P M; Flegg, Jennifer A; Humphreys, Georgina et al. (2016) Optimal health and disease management using spatial uncertainty: a geographic characterization of emergent artemisinin-resistant Plasmodium falciparum distributions in Southeast Asia. Int J Health Geogr 15:37
Boullé, Mikael; Witkowski, Benoit; Duru, Valentine et al. (2016) Artemisinin-Resistant Plasmodium falciparum K13 Mutant Alleles, Thailand-Myanmar Border. Emerg Infect Dis 22:1503-5
Cheeseman, Ian H; Miller, Becky; Tan, John C et al. (2016) Population Structure Shapes Copy Number Variation in Malaria Parasites. Mol Biol Evol 33:603-20

Showing the most recent 10 out of 37 publications