This application is to extend a MERIT award to study RNA synthesis in minus-strand RNA viruses. Nonsegmented negative-sense (NNS) RNA viruses include some of the most significant human pathogens that are an ongoing threat to US public health. For measles, mumps and rabies there are licensed vaccines, but for most NNS RNA viruses there are no vaccines and no antiviral drugs. Our long-term objective is to understand the mechanisms by which the replication machinery of vesicular stomatitis virus (VSV), a prototype of the NNS RNA viruses, functions. VSV is the ideal choice for such studies because it is the only NNS RNA virus for which robust transcription can be reconstituted in vitro from purified recombinant components. The catalytic core of the RNA synthesis machinery is a 241 kDa large protein (L) that contains an RNA dependent RNA polymerase (RdRP), a polyribonucleotidyltransferase (PRNTase) that caps the mRNA, and a dual specificity mRNA cap methyltransferase (MTase). During mRNA synthesis, those activities are coordinated so that the nascent mRNA is capped, methylated and polyadenylated. Although L contains all the enzymatic activities for RNA synthesis, it requires a 29 kDa phosphoprotein (P) that bridges interactions between L and the nucleocapsid protein (N) that completely coats the RNA template. Since the last competing renewal of this grant, we have obtained an atomic model of the VSV L protein. That structure profoundly changes our understanding of the RNA synthesis machinery of the NNS RNA viruses revealing that dynamic inter domain rearrangements in L protein must occur during RNA synthesis, identifying an intimate linkage between capping and RNA synthesis and identifying key P-L interactions that likely facilitate the inter domain rearrangements. Our underlying hypothesis is that the catalytic activities of L in RNA polymerization, mRNA cap addition and cap methylation which reside within structurally separate domains are coordinated by the presence of the P and the template associated N to regulate their activities during mRNA synthesis, and to downregulate them during assembly by complex formation with the viral matrix protein (M). A major gap in understanding the machinery of RNA synthesis is the existing structures of L likely represent the pre-initiation form of the transcriptase. We have in hand an interpretable density map of a rabies virus L-P complex from cryo EM. During the next funding period, we will continue to use cryo electron microscopy (EM), negative-stain EM, X-ray crystallography, in vitro biochemistry of polymerase and molecular virology to provide unique structural and functional insights into VSV and rabies virus polymerases during distinct stages of RNA synthesis and assembly. The successful completion of this work will provide an atomic level structure of an NNS RNA virus polymerase complex and new mechanistic insights into the function and regulation of this RNA synthesis machine during transcription, replication and assembly. Those results may aid efforts toward rational attenuation of NNS RNA viruses for vaccine purposes, and the development of antiviral therapeutics.

Public Health Relevance

The L polymerase protein of nonsegmented negative-strand (NNS) RNA viruses contains an RNA dependent RNA polymerase and a suite of unconventional mRNA capping enzymes including a polyribonucleotidyltransferase and a dual-specificity cap methyltransfease. Understanding how those activities are controlled to ensure that the viral genome is expressed is of intrinsic interest and has the potential to impact the development of antiviral drugs and live attenuated vaccines. Here we will compare structural and functional insights into this protein for a prototype NNS RNA virus, vesicular stomatitis virus and the human pathogen rabies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
4R37AI059371-16
Application #
9816752
Study Section
Special Emphasis Panel (NSS)
Program Officer
Park, Eun-Chung
Project Start
2005-03-01
Project End
2025-04-30
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
16
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Washington University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Heinrich, Bianca S; Maliga, Zoltan; Stein, David A et al. (2018) Phase Transitions Drive the Formation of Vesicular Stomatitis Virus Replication Compartments. MBio 9:
Hanke, Leo; Schmidt, Florian I; Knockenhauer, Kevin E et al. (2017) Vesicular stomatitis virus N protein-specific single-domain antibody fragments inhibit replication. EMBO Rep 18:1027-1037
Morin, Benjamin; Liang, Bo; Gardner, Erica et al. (2017) An In Vitro RNA Synthesis Assay for Rabies Virus Defines Ribonucleoprotein Interactions Critical for Polymerase Activity. J Virol 91:
Maier, Keith E; Jangra, Rohit K; Shieh, Kevin R et al. (2016) A New Transferrin Receptor Aptamer Inhibits New World Hemorrhagic Fever Mammarenavirus Entry. Mol Ther Nucleic Acids 5:e321
Wang, Bingyin; Yang, Chen; Tekes, Gergely et al. (2015) Recoding of the vesicular stomatitis virus L gene by computer-aided design provides a live, attenuated vaccine candidate. MBio 6:
Liang, Bo; Li, Zongli; Jenni, Simon et al. (2015) Structure of the L Protein of Vesicular Stomatitis Virus from Electron Cryomicroscopy. Cell 162:314-327
Lee, Amy Si-Ying; Burdeinick-Kerr, Rebeca; Whelan, Sean P J (2014) A genome-wide small interfering RNA screen identifies host factors required for vesicular stomatitis virus infection. J Virol 88:8355-60
Morin, Benjamin; Whelan, Sean P J (2014) Sensitivity of the polymerase of vesicular stomatitis virus to 2' substitutions in the template and nucleotide triphosphate during initiation and elongation. J Biol Chem 289:9961-9
Ma, Yuanmei; Wei, Yongwei; Zhang, Xiaodong et al. (2014) mRNA cap methylation influences pathogenesis of vesicular stomatitis virus in vivo. J Virol 88:2913-26
Morin, Benjamin; Kranzusch, Philip J; Rahmeh, Amal A et al. (2013) The polymerase of negative-stranded RNA viruses. Curr Opin Virol 3:103-10

Showing the most recent 10 out of 12 publications