Understanding the reasons why SIV-infected sooty mangabeys (SMs) remain healthy despite high viremia is a key unanswered question in contemporary AIDS research, with important ramifications in terms of HIV pathogenesis, therapy, and vaccines. In recent studies, we have sorted central memory CD4+ T cells (TCM) and effector-memory CD4+ T cells (CD4+ TEM) from SIV-infected SMs and rhesus macaques (RMs), and that, while CD4+ TEM were similarly infected in both species, CD4+ TCM of SMs show significantly (>1 log) fewer SIV-DNA copies in vivo than CD4+ TCM of RMs. Based on this result, we hypothesize that protection of CD4+ TCM from virus infection is a key mechanisms by which SIV-infected SMs avoid CD4+ T cell depletion, chronic immune activation, and progression to AIDS. To test this hypothesis we will expand upon this previous work and propose a series of studies that will clarify the main features of in vivo and in vitro SIV infection in CD4+ TCM of both SMs and RMs, and elucidate the mechanisms by which CD4+ TCM of SMs are protected from SIV infection. In the first Aim, we will conduct a systematic comparative analysis of in vivo SIV replication in different CD4+ T cell subsets of SIV-infected SMs and RMs. We will examine different tissues (blood, lymph nodes, mucosal tissues) and CD4+ T cell subsets (Th1, Th2, Th17, and Tregs), and establish correlations with the course of disease progression. In the second Aim, we will study the relationship between SIV replication in central memory CD4+ T cells of LNs and the presence of LN immunopathology, including loss of CD4+ T cells, immune activation, disruption of architecture, fibrosis, and follicular DC virus trapping. In the third Aim, we will assess how SIV replicates in vivo in CD4+ TCM and CD4+ TEM of SMs and RMs by (i) conducting a detailed analysis of the level of integrated proviral DNA, the frequency of SIV-infected cells and the number of RNA copies/cell by limiting dilution analysis, and by (ii) performing sequence analysis of the virus. In the fourth Aim, we will assess the intrinsic susceptibility to SIV infection by CD4+ TCM and CD4+ TEM of uninfected SMs and RMs by conducting experiments of in vitro infection, in which we will seek to identify what stage(s) of virus replication are blocked in CD4+ TCM of SMs. As part of this Aim, we will also study the expression of host restriction factors (i.e., TRIM-5a, APOBECs, and Tetherin) as well as the global transcriptional profile in CD4+ TCM and CD4+ TEM of SMs and RMs. We believe that these studies will advance significantly our understanding of how naturally SIV-infected SMs are resistant to AIDS despite high viremia. We envision that answering this question will provide clues to AIDS pathogenesis in humans that will have ultimately an impact on the prevention and treatment of HIV infection.

Public Health Relevance

Despite a huge effort by the scientific community, there is still neither a cure nor an effective vaccine for AIDS. A major obstacle to achieve these goals is our incomplete understanding of how infection with the human immunodeficiency virus (HIV) causes AIDS. In previous work, others and we have shown that certain African monkeys, such as sooty mangabeys, do not progress to AIDS despite being infected with a virus, the Simian Immunodeficiency Virus (SIV) that is closely related to HIV. The proposed studies are aimed at understanding why the sooty mangabeys are able to remain healthy when infected with SIV. We believe that these studies will improve our comprehension of AIDS pathogenesis in humans and that this knowledge will ultimately translate in better prevention and therapies for the infection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AI066998-09
Application #
8233311
Study Section
AIDS Immunology and Pathogenesis Study Section (AIP)
Program Officer
Embry, Alan C
Project Start
2005-09-01
Project End
2016-02-29
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
9
Fiscal Year
2012
Total Cost
$703,587
Indirect Cost
$265,769
Name
Emory University
Department
Pathology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Palesch, David; Bosinger, Steven E; Tharp, Gregory K et al. (2018) Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature 553:77-81
Calascibetta, Francesca; Micci, Luca; Carnathan, Diane et al. (2016) Antiretroviral Therapy in Simian Immunodeficiency Virus-Infected Sooty Mangabeys: Implications for AIDS Pathogenesis. J Virol 90:7541-7551
Yang, Zhao-Wan; Jiang, Yan-Hua; Ma, Chuang et al. (2016) Coexpression Network Analysis of Benign and Malignant Phenotypes of SIV-Infected Sooty Mangabey and Rhesus Macaque. PLoS One 11:e0156170
Ortiz, Alexandra M; Carnathan, Diane G; Yu, Joana et al. (2016) Analysis of the In Vivo Turnover of CD4+ T-Cell Subsets in Chronically SIV-Infected Sooty Mangabeys. PLoS One 11:e0156352
Barbian, Hannah J; Decker, Julie M; Bibollet-Ruche, Frederic et al. (2015) Neutralization properties of simian immunodeficiency viruses infecting chimpanzees and gorillas. MBio 6:
Mir, Kiran D; Mavigner, Maud; Wang, Charlene et al. (2015) Reduced Simian Immunodeficiency Virus Replication in Macrophages of Sooty Mangabeys Is Associated with Increased Expression of Host Restriction Factors. J Virol 89:10136-44
D'arc, Mirela; Ayouba, Ahidjo; Esteban, Amandine et al. (2015) Origin of the HIV-1 group O epidemic in western lowland gorillas. Proc Natl Acad Sci U S A 112:E1343-52
Chahroudi, Ann; Silvestri, Guido; Lichterfeld, Mathias (2015) T memory stem cells and HIV: a long-term relationship. Curr HIV/AIDS Rep 12:33-40
Sauter, Daniel; Hotter, Dominik; Van Driessche, BenoƮt et al. (2015) Differential regulation of NF-?B-mediated proviral and antiviral host gene expression by primate lentiviral Nef and Vpu proteins. Cell Rep 10:586-99
Cohn, Lillian B; Silva, Israel T; Oliveira, Thiago Y et al. (2015) HIV-1 integration landscape during latent and active infection. Cell 160:420-32

Showing the most recent 10 out of 34 publications