This proposal is designed to provide insights into the implementation of motivated behaviors by specific neural circuits, by testing and applying new tools that complement the control capability of optogenetics with novel structural and activity insights. Integrating our new chemical engineering- based technology (HETT: hydrogel-electrophoretic tissue transmutation) with imaging, behavioral, and optogenetic analysis, we propose to connect the wiring to the activity and causal impact of cell populations involved in mammalian motivated behavior, with simultaneous molecular precision and global scope. In brief, the opportunity has now emerged to measure, in models of mouse behavior relevant to motivation-linked clinical conditions: 1) brainwide neuronal activity patterns during specific motivated behaviors, 2) immunophenotypes of those activated cells, 3) global projection patterns of those same cells, and 4) causal impact of those cells on circuit activity and behavior.
In Aim 1, we employ HETT to rapidly transform dense intact brain tissue into transparent and antibody-permeable form, and thereby rapidly and efficiently map in global (brainwide) fashion those neural populations with altered activity in settings of motivated behaviors (conditioned place preference, social interaction, sucrose consumption, and escape behavior);we have recently shown that in all of these behaviors we are able to bidirectionally modulate the key behavioral outcome with corresponding bidirectional modulation of dopamine neurons, providing substantial experimental leverage for Aims 2 and 3 below. The resulting brainwide activity maps will be made available online in rendered volumes as a community resource.
In Aim 2, building on both our preliminary data as well as new data from Aim 1, in neural populations specifically and bidirectionally modulated during the four dopamine neuron-driven behaviors, we will bring to bear causal sufficiency and necessity tests using optogenetics in freely-moving mice to assess for modified behavior as a result of controlling activity in the implicated projections and populations of cells downstream of the dopamine neurons. We will track not only behavior but also local circuit activity in freely-moving mice, and HETT analysis will record on an individual-animal basis, linked to behavior, the extent and nature of circuit influences exerted in each experimental subject as well as the brainwide projection patterns of the causally implicated cell populations. Finally, in Aim 3 we seek circuit-dynamics insights into motivated behavior, applying high-speed volumetric activity readouts both in vivo and in acute slices from target brain regions implicated in Aims 1 and 2, during optogenetic drive of the dopamine neurons. The imaged tissues will then be processed for HETT, thereby transforming the very same 1) behaviorally tested and 2) live-imaged tissue into 3) a rigid and stable structure that can be interrogated for wiring and immunophenotype. Together, the approaches proposed here will integrate novel technology to probe fundamental causal underpinnings and mechanisms of circuit activity controlling motivated behaviors in freely-moving mammals.

Public Health Relevance

Optogenetics, the use of light to control well-defined events within specific cell types in the brain, is now widely applied to the study of motivated behaviors in animal models ranging from cocaine conditioning to social interaction. However, current optogenetic tools even in combination with powerful electrophysiological, pharmacological and genetic experimental paradigms, do not allow us to fully understand how these complex motivated behaviors arise (or fail to arise in disease states) from interactions of diverse cells. The efforts proposed here will test and apply versatile and powerful new tools for high-precision analysis that complement the control capability of optogenetics with novel structural and activity insights into neural circuits as they operate, thereby providing direct insights into the implementation of motivated behaviors by specific neural circuits. This is important work for human health since due to the complexity of the brain we do not know precisely which circuits must be modulated, and in what manner, to understand, diagnose, and treat disorders of the motivation and reward systems that occur in many neuropsychiatric diseases.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Neurobiology of Motivated Behavior Study Section (NMB)
Program Officer
Pilotte, Nancy S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Kim, Christina K; Adhikari, Avishek; Deisseroth, Karl (2017) Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 18:222-235
Ye, Li; Allen, William E; Thompson, Kimberly R et al. (2016) Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences. Cell 165:1776-1788
Ferenczi, Emily A; Zalocusky, Kelly A; Liston, Conor et al. (2016) Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 351:aac9698
Berndt, Andre; Lee, Soo Yeun; Wietek, Jonas et al. (2016) Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Proc Natl Acad Sci U S A 113:822-9
Sylwestrak, Emily Lauren; Rajasethupathy, Priyamvada; Wright, Matthew Arnot et al. (2016) Multiplexed Intact-Tissue Transcriptional Analysis at Cellular Resolution. Cell 164:792-804
Ferenczi, Emily; Deisseroth, Karl (2016) Illuminating next-generation brain therapies. Nat Neurosci 19:414-6
Kim, Hoseok; Ährlund-Richter, Sofie; Wang, Xinming et al. (2016) Prefrontal Parvalbumin Neurons in Control of Attention. Cell 164:208-218
Adhikari, Avishek; Lerner, Talia N; Finkelstein, Joel et al. (2015) Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527:179-85
Jennings, Joshua H; Ung, Randall L; Resendez, Shanna L et al. (2015) Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160:516-27
Grosenick, Logan; Marshel, James H; Deisseroth, Karl (2015) Closed-loop and activity-guided optogenetic control. Neuron 86:106-39

Showing the most recent 10 out of 20 publications