?Prograrii.Director/Prlnclpal Investigator (Last, First, Middle): H a r h i d : S a i d M . PRQJECPTSLJMMARY (See;instructions):'' The long-term objectives pf this renewal application continue to focus on developing a Comprehensive understanding of the physiology and pathophysidlpgy of the intestirial absorptibh process of the: waterrSolub|e vitarfiiri Bl (thiamine) at the cellular and molecular levels, how the: process is regulated', and how it i$-affected by external factors like chronic alcohol exposure. Thiamine;is indispensable for norrinal hurnan health arid is obtained from exogenous sources via intestinal absorption. Studies during the current funding period have used """"""""Slci:9a2 -/-and Slcl 9a3 -/- knockout mouse models to show that both thiamin transporter 1 &;i2 (THTR-1 .&2) are invPlved in, intestinal thiamin absorption;that the intestinal thiamine uptake process is a'daptively regulated by extracellular substrate levelvia transcriptional mechanism involving the transciriptiphal factor SP1;Vthat tetraspanin-1 (,Tspan-1) and transmembrane 4 super-family member 4'(TM4SF4)"""""""" proteins;are ihteractihg. partners with intestinal THTR-1 and THTR-2, respectively! and thai they affect their physiolpgy/cell biology;and that enteropat.hogenic Escherichia cpli and enterotoxigenic E. Coll inhibit ihtestirial thiamine uptake;Twoadditional and very relevant studies were also'initiated during the current funding period with the first dealing with the identification pf existence of a specificand efficient carrier-riiediated systerh for uptake of the niicrpbiota-generated thiamin pyrophosphate (TPP) in the colon (i. e., the SL:G44A4 system), and the second isthedennonstration that the inhibitory effect of chronic alcohol feedihg/expoisure: on intestinal thiamine uptake is mediated at the level of transcription of the'SLCi9A2 and SLG19A3: genes. Based pn these new findings', pur working hypotheses during, the next.peribd will be that the SL'G44A4 system is a specific and regulated colonic TPP uptake system, and that transcriptional (e. g., epigenetic). mechanisms are involved in mediating the inhibitory effect of ch j-onic alcohol exposure oh intestihal thiiamin uptake. Four specifiG'aims are proposed to address these hypptheses, and N utilize state-pif the art eellular/mdlecular approaches. Hesults of these studies :sh6uld cdntinue to prbvid^ novel iriformatipn regarding the physiolpgy/pathophysiblogy of the intestinal vitamin B1 absorption process.

Public Health Relevance

fSee ihstruclions): Humans cannot synthesize vitaniinBI (thianiin) but obtain it from exogenous sources via intestinal absprptipn. The ai.ms pf this proposal are focused ph delineating how our ihtestine absorb,thiamin, how fhe prpGess:is regulated, and how certain conditions affect the prociess leading to defieiency. The ultimate;goal istbfind waystdQiitihiizetbpdythiaimih nutritilDn cdriditions of deficiency/sufaoptimal levels.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
No Study Section (in-house review) (NSS)
Program Officer
Maruvada, Padma
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
United States
Zip Code
Subramanian, Veedamali S; Sabui, Subrata; Moradi, Hamid et al. (2018) Inhibition of intestinal ascorbic acid uptake by lipopolysaccharide is mediated via transcriptional mechanisms. Biochim Biophys Acta Biomembr 1860:556-565
Elahi, Asif; Sabui, Subrata; Narasappa, Nell N et al. (2018) Biotin Deficiency Induces Th1- and Th17-Mediated Proinflammatory Responses in Human CD4+ T Lymphocytes via Activation of the mTOR Signaling Pathway. J Immunol 200:2563-2570
Lakhan, Ram; Subramanian, Veedamali S; Said, Hamid M (2017) Role of MicroRNA-423-5p in posttranscriptional regulation of the intestinal riboflavin transporter-3. Am J Physiol Gastrointest Liver Physiol 313:G589-G598
Subramanian, Veedamali S; Srinivasan, Padmanabhan; Wildman, Alexis J et al. (2017) Molecular mechanism(s) involved in differential expression of vitamin C transporters along the intestinal tract. Am J Physiol Gastrointest Liver Physiol 312:G340-G347
Sabui, Subrata; Subramanian, Veedamali S; Kapadia, Rubina et al. (2017) Adaptive regulation of pancreatic acinar mitochondrial thiamin pyrophosphate uptake process: possible involvement of epigenetic mechanism(s). Am J Physiol Gastrointest Liver Physiol 313:G448-G455
Lakhan, Ram; Said, Hamid M (2017) Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway. Am J Physiol Cell Physiol 312:C376-C384
Anandam, Kasin Yadunandam; Srinivasan, Padmanabhan; Subramanian, Veedamali S et al. (2017) Molecular mechanisms involved in the adaptive regulation of the colonic thiamin pyrophosphate uptake process. Am J Physiol Cell Physiol 313:C655-C663
Subramanian, Veedamali S; Sabui, Subrata; Teafatiller, Trevor et al. (2017) Structure/functional aspects of the human riboflavin transporter-3 (SLC52A3): role of the predicted glycosylation and substrate-interacting sites. Am J Physiol Cell Physiol 313:C228-C238
Srinivasan, Padmanabhan; Thrower, Edwin C; Gorelick, Fred S et al. (2016) Inhibition of pancreatic acinar mitochondrial thiamin pyrophosphate uptake by the cigarette smoke component 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Am J Physiol Gastrointest Liver Physiol 310:G874-83
Nabokina, Svetlana M; Ramos, Mel Brendan; Said, Hamid M (2016) Mechanism(S) Involved in the Colon-Specific Expression of the Thiamine Pyrophosphate (Tpp) Transporter. PLoS One 11:e0149255

Showing the most recent 10 out of 71 publications