Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37GM017980-27
Application #
2172996
Study Section
Special Emphasis Panel (NSS)
Project Start
1978-09-01
Project End
1998-08-31
Budget Start
1996-09-01
Budget End
1997-08-31
Support Year
27
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Raytcheva, Desislava A; Haase-Pettingell, Cameron; Piret, Jacqueline et al. (2014) Two novel proteins of cyanophage Syn5 compose its unusual horn structure. J Virol 88:2047-55
Zhu, Bin; Tabor, Stanley; Raytcheva, Desislava A et al. (2013) The RNA polymerase of marine cyanophage Syn5. J Biol Chem 288:3545-52
Moreau, Kate L; King, Jonathan A (2012) Cataract-causing defect of a mutant ýý-crystallin proceeds through an aggregation pathway which bypasses recognition by the ýý-crystallin chaperone. PLoS One 7:e37256
Raytcheva, Desislava A; Haase-Pettingell, Cameron; Piret, Jacqueline M et al. (2011) Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol 85:2406-15
Kong, Fanrong; King, Jonathan (2011) Contributions of aromatic pairs to the folding and stability of long-lived human ýýD-crystallin. Protein Sci 20:513-28
Knee, Kelly M; Goulet, Daniel R; Zhang, Junjie et al. (2011) The group II chaperonin Mm-Cpn binds and refolds human ?D crystallin. Protein Sci 20:30-41
Acosta-Sampson, Ligia; King, Jonathan (2010) Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone. J Mol Biol 401:134-52
Das, Payel; King, Jonathan A; Zhou, Ruhong (2010) beta-Strand interactions at the domain interface critical for the stability of human lens gammaD-crystallin. Protein Sci 19:131-40
Moreau, Kate L; King, Jonathan (2009) Hydrophobic core mutations associated with cataract development in mice destabilize human gammaD-crystallin. J Biol Chem 284:33285-95
Chen, Jiejin; Callis, Patrik R; King, Jonathan (2009) Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage. Biochemistry 48:3708-16

Showing the most recent 10 out of 12 publications